
University of Edinburgh

Departments of Computer Science and

Arti�cial Intelligence

The Implementation of a

Modular Prolog System

Based on Standard ML

Modules

4th Year Project Report

Brian Paxton

May 30, 1992

Abstract

This report describes an implementation of the Standard ML modules system for Prolog, orig-

inally presented by Sannella and Wallen in [SW92]. The modules system itself allows hierar-

chically structured programs to be constructed from parameterised components and provides

a form of structural data abstraction. Also discussed, in some detail, is the interaction of the

extra-logical facilities of Prolog with the modules system.

Chapter 1

Introduction

The task of this project was to implement a modules system for Prolog. The main result

of the work is a working implementation of the modules system proposed by Sannella and

Wallen in their paper [SW92]. This document discusses the problems involved in designing and

implementing the modules system and the decisions made throughout the duration of the work.

The modules system is based on the modularisation facilities of Standard ML and provides

facilities to hierarchically structure programs as well as providing a form of structural data

abstraction. For a more detailed discussion of the module system, see [SW92] or for a discussion

of the modules system in Standard ML see [Har89].

This project aims to implement the modules system on top of an existing Prolog system.

Many existing modules systems have been proposed for Prolog, but these lack exibility and

features such as data abstraction. The modules system I have implemented here addresses

these issues, and I have gone on to describe how existing Prolog extra-logical predicates, such as

assert/1, can be modi�ed to operate in the new environment. Many other module systems, many

implemented via a simple pre-processor which converts modular programs to Standard Prolog

ones, do not discuss issues such as the run-time e�ect of extra-logical predicates, resulting in

incomplete and inexible systems.

The report is structured into several chapters. The �rst is an introductory overview to the

modules system itself, which is followed by a chapter giving the formal syntax of the language

and a discussion of the di�erences between the system implemented and the system proposed

in [SW92]. After this, I briey overview the nature of the project and discuss the two versions

of the system I have implemented. Concluding chapters discuss issues such as using the new

Modular Prolog and possible ideas for future Modular Prolog work. Throughout this report, the

reader is assumed to have a knowledge of Standard Prolog.

1

1.1 Terminology

The terminology I will be using throughout this report is given below. Prolog has much termi-

nology associated with it, much of which is contradictory (see appendix B), but hopefully the

terminology I shall use highlights the nature of the modules system, by emphasizing the di�erence

between predicates and functions, without straying too far from Standard Prolog terminology.

The need to summarize terminology here is highlighted by the modules system itself, which

introduces module constructs called structures and functors. These names are used by the Prolog

community already, and so I will try to avoid contradiction where possible.

A Predicate Constant consists of a Predicate Symbol and an Arity.

A Function Constant consists of a Function Symbol and an Arity.

A Function Application consists of a Function Constant and a sequence of Terms

A Predicate Application consists of a Predicate Constant and a sequence of Terms

A Compound Term is a Function Application or Predicate Application.

An Atom is a zero arity Function Application.

A Number is an Integer or a Float.

A Term is anything expressible in the language

(Variable, Atom, Number, Compound Term or List).

A Term is Atomic if it is an Atom or a Number (but not a Variable).

If the terms predicate or function appear by themselves it is an abbreviated form of predicate

constant or function constant respectively.

2

Chapter 2

The Module System

The modules system implemented here was proposed by Sannella and Wallen for several im-

portant reasons. Firstly, although e�cient implementations of Prolog are available, Standard

Prolog lacks the ability to create large programs from independent modules with well-de�ned

interfaces. The user continually has to check that predicate names are unique throughout the

program as name clashes can be fatal. This is not an easy task when programs can be thousands

of lines long and can be spread over several �les. Secondly, the addition of facilities for data

abstraction has been shown in the context of other languages to be a useful tool for writing

complex programs. With data abstraction, the internal representation of a data structure can

be updated with little or no alteration to existing programs | a de�nite advantage in larger

systems. Thirdly, the addition of a modules system like the one discussed here allows a better

programming style and formal development strategy to be used when constructing Prolog pro-

grams from formal speci�cations. Work on formal program development can be found in [RK92]

where program development using this modules system is discussed.

The modules system itself consists of three types of component : structures, signatures and

functors. Structures are the basic building blocks of the system, signatures de�ne the interfaces

to structures and functors are parameterised structures. I begin by introducing structures.

The following is an example of a structure `stack1' :

structure stack1 =

struct

fun item/2 and empty/0.

newstack(empty).

pop(item(X,Stack),Stack,X).

push(Stack,X,item(X,Stack)).

isempty(empty).

end.

Normally, the body of a structure begins with a sequence of declarations, followed by the ac-

3

tual program code for the structure. In the above example, the only declaration is fun item/2 and

empty/2 which introduces the language to be used by the code in the rest of the structure. Here

fun item/2 and empty/2 declares a function `item' of arity 2 and a function `empty' of arity

0. These are the only functions that may be used by the program code in the structure | using

any others produces a warning message.

In addition to the declaration of functions, the modules system also allows declaration of

predicates. If the line pred test/1 were inserted into the above structure, a predicate `test' (of

arity 1) would be created, but will have no code associated with it. In this case, any calls to that

predicate will simply fail. The declaration of predicates cannot be used to declare a predicate

which has clauses listed later in the structure.

Signatures de�ne the contents of a structure that are externally visible. Any constant that

exists inside a structure but not in its corresponding signature is hidden. This provides a method

for hiding details of actual code and to allow the creation of abstract data types.

If we extend the above example to give structure `stack1' a signature, we would get something

like :

signature stacksig =

sig

pred pop/3 and push/3 and newstack/1 and isempty/1.

end.

structure stack2/stacksig =

struct

fun item/2 and empty/0.

newstack(empty).

pop(item(X,Stack),Stack,X).

push(Stack,X,item(X,Stack)).

isempty(empty).

end.

The structure `stack2' matches the signature `stacksig' as every constant referred to in `stack-

sig' appears in `stack2'. Note however, that there is no mention of the functions `item/2' and

`empty/0' in `stacksig'. This is because we want the structure to provide a set of stack opera-

tions without allowing the user to get direct access to the representation of stacks. Omitting the

function declarations in the signature e�ectively hides the functions from the outside world.

In the earlier example, no signature was given for the structure `stack1'. This is a special

case and means that any constant, predicate or function contained in the structure is visible

from outside the structure.

A point worth noting here is that a constant cannot be declared as both a predicate and a

4

function. To clarify, if a function fun test/2 were declared in a structure, it would be illegal

to go on and declare pred test/2 or to simply give program clauses for the predicate `test/2'.

Conversely, a constant declared as a predicate, cannot be redeclared as a function later. It is

possible however, to have declarations like fun test/2 and pred test/1 as `test/1' and `test/2'

are considered unique constants.

Taking the idea of a function further, we can declare functions as `fun X = Y'. This is shown

in the following example :

structure uses_stacks

struct

fun item/2.

fun newitem/2 = stack1:item.

stack_non_empty(newitem(_,_)).

....

end.

Here we have declared a new function `newitem/2' in terms of the function `stack1:item/2'.

These two functions are now considered identical for uni�cation purposes. These declarations

allow functions in di�erent structures to be compared simply by uni�cation. However, more

importantly, these declarations allow one data structure to be de�ned in terms of other data

structures, which may exist inside other structures. This allows a simple form of datatyping in

Prolog.

The line fun newitem/2 = stack1:item can actually be simpli�ed to fun newitem = stack1:item

as there is only one function symbol `item' inside structure `stack1' so no confusion can arise.

Equality can be de�ned over any function previously declared (as long as the function is not hid-

den), so the declaration fun newitem = item is equally valid, and sets up an equality between

`uses stacks:newitem/2' and `uses stacks:item/2'.

After de�ning basic structures, it is then straightforward to de�ne others in terms of the

basic ones. The simplest of these declarations is as follows :

structure renamedstack = stack2.

which in fact is equivalent to :

structure renamedstack = stack2/stacksig.

structure renamedstack/stacksig = stack2.

The other method for combining structures is to use functors. When declaring a functor, a

list of arguments is given, along with the signature of each. For example :

functor utils(x/stacksig) =

struct

5

structure s = x.

ismember(X,Stack) :-

s:pop(Stack,_,X).

ismember(X,Stack) :-

s:pop(Stack,NewStack,_),

ismember(X,NewStack).

end.

structure memberstack = utils(stack2).

There are a few concepts to note here. Firstly, the line structure s = x shows how a

hierarchy of structures can be built. The structure `s' is a substructure of the parent structure.

These are legal declarations inside normal structures too. Secondly, in order to use a predicate

or a function in a substructure, the predicate or function name must be quali�ed. This means

specifying a pathname to the `home' module of the constant concerned. In the above example,

s:pop(Stack,_,X) is an example of this. In general, structures can be nested to any depth, so

paths can be of any length, and have the general form module

1

: ... module

N

:name.

A functor by itself cannot be used as a program section, but the results of applying a functor

to parameter structures (a process called functor application) can be used to build new structures.

The structure `memberstack' is built in this way above. Parameters can be any structure which

matches the corresponding signature in the functor heading.

A last concept to grasp in this introductory overview is the concept of sharing. Consider the

following program :

structure stack3/stacksig =

struct

newstack([]).

pop([X|Stack],Stack,X).

push(Stack,X,[X|Stack]).

isempty([]).

end.

functor moreutils(x/stacksig) =

struct

structure stack = x.

haslength(Stack,0) :-

stack:isempty(Stack).

haslength(Stack,Len) :-

stack:pop(Stack,Nstack,_),

haslength(Nstack,Part),

6

Len is Part + 1.

end.

structure one = utils(stack2).

structure two = moreutils(stack3).

functor example(x/sig1, y/sig2) =

struct

structure a = x.

structure b = y.

test :-

a:stack:newstack(X),

b:stack:isempty(X).

end.

structure final = example(one,two).

However, there is a problem. The structures `�nal:a:stack' and `�nal:b:stack' both de�ne

an abstract data type which matches `stacksig', but there is no reason why the actual imple-

mentation and internal representation of the data type is the same. In other words, we cannot

expect objects created in these separate structures to unify when we do not know anything about

them (a call to the predicate �nal:test/0 in the above program will fail). It is for this reason

we introduce sharing constraints. This statement, placed after the argument list in the functor

head, ensures that certain substructures of the arguments are in fact the same structure by

forbidding application of the functor to inappropriate parameter structures. This ensures that

the representation used by the abstract data type is consistent, and compatibility is guaranteed.

Here is the new version of the functor :

functor example(x/sig1, y/sig2 sharing x:stack = y:stack) =

struct

....

end.

This ensures that `x:stack' and `y:stack' inside the functor are the same structure. Once this

constraint is in place, we �nd that any pair of structures accepted by the functor example will

ensure that example:test/0 succeeds. If we adapted the declaration of structures `one' and `two'

to

structure one = utils(stack2).

structure two = moreutils(stack2).

or to

7

structure one = utils(stack3).

structure two = moreutils(stack3).

we �nd that the program is acceptable and a call to example:test/0 succeeds. This facility makes

certain classes of buggy program illegal, and acts as a debugging aid for the programmer.

This concludes the basic overview of the modules system. Examples of larger programs are

given in Appendix C. Sannella and Wallen do a similar overview in more detail in their paper

[SW92], and Read and Kazmierczak also use Modular Prolog in their work [RK92]. However,

it is vital to point out that although the modules system introduced here is basically the same

system as described in the other two papers, the syntax has changed slightly in one or two

respects. A full list of syntax changes is given in the next chapter.

8

Chapter 3

Syntax

The following is the full syntax used by Modular Prolog in this paper. Major changes from that

given in [SW92] are marked with *.

PROGRAMS prog

prog ::= dec

SIGNATURE BINDINGS sigb

sigb ::= atid = sigexpr

FUNCTOR BINDINGS funb

funb ::= atid(plist) = strexpr

plist ::= atid

1

/sigexpr

1

, ... , atid

N

/sigexpr

N

[sharing patheq

1

and ... and patheq

M

]

patheq ::= id

1

= ... = id

N

STRUCTURE BINDINGS strb

strb ::= atid = strexpr

SIGNATURE BINDINGS sigexpr

sigexpr ::= atid

sig spec end

spec ::= pred atid/nat.

fun atid/nat.

structure specstrb

1

and ... and specstrb

N

. *

sharing patheq

1

and ... and patheq

N

. *

spec spec'

specstrb ::= atid/sigexpr

STRUCTURE EXPRESSIONS strexpr

strexpr ::= id

struct dec end

strexpr/sigexpr

9

atid(strexpr

1

, ... , strexpr

N

)

DECLARATIONS dec

dec ::= atid(term

1

,...,term

N

) [:- atid

1

(term

11

,...),...,atid

M

(term

M1

,...)].

fun atid/nat.

fun atid/nat = id.

pred atid/nat. *

structure strb. *

signature sigb. *

functor funb. *

dec dec'

MODULAR PROLOG IDENTIFIERS id

id ::= atid j atid:id

Asterisks only show the major changes and these are discussed later.

3.1 Derived Forms

The functor binding

atid(plist) / sigexpr = strexpr

is equivalent to

atid(plist) = strexpr / sigexpr

The structure binding

atid / sigexpr = strexpr

is equivalent to

atid = strexpr / sigexpr

The declaration

inherit atid.

is equivalent to

structure atid = atid.

The speci�cation and declaration

pred atid1

1

/nat

1

and ... and atid

N

/nat

N

.

is equivalent to

pred atid

1

/nat

1

.

...

pred atid

N

/nat

N

.

10

The speci�cation and declaration

fun atid

1

/nat

1

and ... and atid

N

/nat

N

.

is equivalent to

fun atid

1

/nat

1

.

...

fun atid

N

/nat

N

.

The declaration

fun atid = id.

is equivalent to

fun atid/n = id. (Provided id unambiguously refers to a function constant with

arity n).

3.2 Syntax Di�erences

There are di�erences between this syntax and that given in [SW92]. The major changes are

justi�ed in this section.

One of the more obvious changes to the syntax is that a colon (:) is now used to build module

paths, and the slash (/) to signify the arity or signature of an object. This is swapping the roles

of these characters introduced in [SW92]. The reason is simple. The Prolog community has long

been using a `/' to specify predicate arities (for example, append/3), so it is natural to retain

that role. Its role is now extended to specifying the signature of structures as well (for example,

`structure1/signature1', which means `structure1' must match `signature1'), allowing the colon

to be used solely for the purpose of modular path identi�cation. This change is minor, but makes

transition from Standard Prolog to Modular Prolog easier.

When specifying sharing constraints of structures inside a signature, the old syntax was :

structure specstrb

1

and ... and specstrb

N

[sharing patheq

1

and ... and patheq

N

].

This has now been changed to the form given earlier, where the sharing speci�cation is

considered separate from the structure speci�cation :

structure specstrb

1

and ... and specstrb

N

.

sharing patheq

1

and ... and patheq

N

.

This small change was made simply to bring the syntax more up to date with the current

syntax of Standard ML. The change makes no di�erence to the semantics of the language (except

11

that the sharing speci�cation must occur after the structure speci�cation) and actually makes

the syntax of the language simpler.

The syntax of declarations of structures, functors and signatures have been altered as well.

The form of these declarations was originally :

structure strb1

1

and and strb

N

.

signature sigb1

1

and and sigb

N

.

functor funb1

1

and and funb

N

.

where N � 1.

but this has now been simpli�ed to the restricted case where N = 1. This change reduces the

complexity of the syntax, but does not reduce the expressive power of the language. This will

now be justi�ed.

The token `and' is used in Standard ML to allow de�nitions of more than one item to be

de�ned together. In the case of functions, it is used so that mutually recursive functions can be

created. For example :

fun x(arg) = y(arg) (* An ML program. *)

and y(arg) = x(arg) ; (* Silly example. *)

However, when extended to module constructs, recursively de�ned constructs are disallowed

as one of the restrictions of the modules system is that constructs have to be de�ned before they

are used (see [SW92], section 2.8). Therefore, the following program is illegal

structure one =

struct

structure t = two. % Recursive.

....

end

and two =

struct

structure o = one. % Recursive.

....

end.

Since recursively de�ned constructs are illegal, any two structures de�ned as a sequence

separated by `and's is equivalent to a sequence of separate structure declarations, as long as the

same order in maintained. Therefore, the change to the syntax does not alter the expressive

power of the module syntax.

The syntax of declarations has been extended to include pred atid/nat. This is because

the module language insists that all predicates and functions are declared before they are used.

12

This means that in certain cases it is of convenience to declare a predicate which contains

no clauses, and so this declaration creates an `empty' predicate in the database. However,

more importantly, this means that the declaration before use constraint is not violated. This

declaration also ensures that the run-time system does not generate `Unknown Predicate' errors

when an attempt is made to call it (calls simply fail). Database programs are the major class of

programs which can use this facility to their convenience. Take the following example :

structure database =

struct

pred data/1.

add(X) :-

assert(data(X)).

list :-

data(X),

write(X), nl,

fail.

list.

end.

Without the predicate declaration pred data/1, the programmer would have to insert a

clause data(_) :- fail in order to prevent `Unknown predicate' errors if `database:list/0' was

called when no data had been added and to ensure that the program was a valid one.

None of these changes in syntax reduce the power of the modules system, but attempt

to make the transition from Standard Prolog to Modular Prolog simpler (by retaining some

Standard Prolog conventions) and attempt to bring the modules system more up to date with

current versions of the Standard ML modules.

3.3 Further Changes

This section covers the changes made to the proposed system that do not fall into the category

of syntax changes.

The �rst change, relating to the semantics of the language, has to do with the treatment of

declarations like :

structure a = b/bsig.

In the old semantics, this declaration created a new structure `a', completely distinct from

structure `b'. This is not really intuitive, since we are e�ectively de�ning an equality between

structures. It seems to make more sense for structure `a' to simply be another name for structure

`b'.

13

A good example of where the original semantics would give undesirable results is given in

the following program :

signature datasig =

structure data/datasig =

struct

....

data(1).

data(2).

list_data :-

data(X), write(X), nl, fail.

end.

structure test =

struct

structure testdata = data/datasig.

another_list_data :-

data(X), write(X), nl, fail.

end.

If we assert new data into the structure `data', we �nd that test:another list data/0 and

data:list data/0 output di�erent data. If the line structure testdata = data/datasig were

replaced by structure testdata = data, we would �nd the outputs were the same. The

addition of a signature constraint should not a�ect the results so dramatically. The semantics

were therefore changed in this respect and remain consistent with the semantics of Standard

ML.

Abstractions were introduced in [SW92] but are not implemented in this Modules System as

they are of questionable value in Prolog. In Standard ML, abstractions are used to hide actual

datatypes inside a structure. i.e. compare the following :

signature SIG =

sig

type t;

val x:int -> t

end;

structure S:SIG = | abstraction S:SIG =

struct | struct

type t = int; | type t = int;

fun x a = a | fun x a = a

end; | end;

14

|

- S.x(3); | - S.x(3);

> val it = 3 : int; | > val it = - : S.t

- S.x(3):int; | - S.x(3):int;

> val it = 3 : int; | Error: expression and constraint

| don't agree (tycon mismatch)

| expression: S.t

| constraint: int

| in expression:

| x (3)

The abstraction limits all information available about a structure to that speci�ed in the

signature. Therefore, the second example produces an error because the datatype `s.t' is known

outside `s' and the datatype `int' is known, but the information that `s.t' is in fact equal to `int'

is hidden inside the abstraction.

This has no real meaning in Prolog since there is no strong notion of types in Prolog and it is

su�cient to simply hide predicate and functions. [SW92] tried to approximate ML abstractions

in Prolog but results were not really satisfactory.

In the original paper, `open' declarations were proposed. If an open Y declaration was made

inside a structure X, the signature of structure Y would be merged with X's signature, allowing X

to use the predicate and functions of structure Y without explicit quali�cation. However, this is

simply a programming convenience and can be avoided by simply performing an inherit Y and

qualifying all references to Y. It is for this reason that `open' declarations were not implemented

in my version of the modules system.

In Standard Prolog there are two forms of consulting : consult and reconsult. If a �le is

loaded that contains clauses for a predicate already de�ned in the database, consult will merge

the two sets of clauses, but reconsult will erase the old existing clauses before loading the new

ones. To clarify, imagine we have a �le called `test' which contains the following :

data(one).

data(two).

If we consult the �le twice we get the following in memory

data(one).

data(two).

data(one).

data(two).

whereas if we reconsult the �le twice we get

15

data(one).

data(two).

The technique used when reloading modular programs is in fact the same technique as that

used by Standard ML. In Standard ML, if a structure, signature or functor is reloaded, it

supersedes the existing de�nition, but the existing de�nition is not removed. For example,

suppose the structure `test' is declared and several other structures use that version of the

declaration. If a newer version of `test' is loaded, it replaces the old version, and any new

structures using the structure `test' use the new version. However, the existing structures that

used the old version of `test', continue to use the old version, not the new. This idea is used in

Modular Prolog : a module construct is totally de�ned in terms of the most recent version of

other constructs.

In this respect, the new modular version of consult is something in between a Standard Prolog

consult and reconsult. In the new consult, old versions of predicates de�ned at the top level are

merged with any new clauses that may be loaded. However, reloading a structure generates a

completely new and distinct structure, so any predicates that are reloaded inside that structure

are actually distinct predicates from the ones that were previously loaded. In this respect, the

database is merged (nothing is ever removed).

Notice that a modular version of consult which actually tries to merge clauses for predicates

declared inside structures is in fact impossible to implement. Take the following program, which

corresponds to a complete �le :

structure a =

struct

... some predicates ...

end.

structure b = a.

structure a =

struct

... some more predicates ...

end.

If the �le was consulted twice, and we wanted each predicate in the �le to have its clauses

merged, how would the consult routine know that when we read in the �rst version of structure `a'

for the second time, that that structure was the same as the �rst structure `a' loaded previously,

and not the last structure `a' loaded ? This is why a merging consult is impossible.

The modules language discussed here introduces a powerful program construction language,

with basic datatyping through the use of function and predicate declarations. However, the

16

original semantics enforced the constraint that all predicates and functions had to be declared

before they were used. This is not ideal in a Prolog environment. To illustrate this point,

consider Prolog atoms which are regarded as zero-arity functions. In many cases an atom is

used as a function, but in equally many other cases, it is not. Atoms are used to name �les and

structures, and are used as text to be displayed. It is not practical for the user to declare every

piece of text that is contained within a program, nor is it practical to declare arguments to all

the following predicates | structure/2, consult/1, abolish/2, see/1, tell/1, listing/1, display/1,

print/1 | all of which take atoms in some form as arguments, but none can really be described

as a function.

To make the modules language more usable in this respect, I have relaxed this declaration

before use constraint, and now accept all predicates and functions, even if they have not been

declared, displaying only a warning message instead or rejecting undeclared input. Checks are

still made on quali�ed predicates and functions (predicates and functions not in the current

structure) as these are still subject to hiding constraints. Undeclared predicates and functions

are not considered during signature matching, so any constant which must match a signature

speci�cation must still be explicitly declared.

These changes make the modules system much easier to use, and in fact it was personal

experience constructing my own Modular Prolog programs that suggested the change.

As mentioned in the overview of the modules system, all predicates and functions now have

to be distinct | a name/arity pair inside a structure must de�ne a predicate or a function,

but not both. This approach provides a cleaner programming style, without greatly reducing

exibility. This decision and its consequences are discussed later.

This concludes the list of changes made to the modules system. For the changes made to

the semantic equations given in [SW92] to compensate for the changes listed in the previous two

sections, see the appendix A.

17

Chapter 4

Overview of Project

Having overviewed the modules system, I now discuss the implementation of it. The modules

system in this project is a simple extension to Standard Prolog, so is implemented on top of an

existing version of Prolog.

Firstly a brief overview of the underlying Prolog system is required. The Prolog system I use

is SB-Prolog, an interpreter and compiler package based on the Warren Abstract Machine

1

. The

Warren Abstract Machine (hereafter referred to as the WAM) is an abstract Prolog instruction

set suitable for software, �rmware or hardware implementation. The WAM can be regarded as

the instruction set of the ideal \Prolog Machine" and is introduced in a paper by D.H.D.Warren

[War83].

The Prolog system itself can be divided into two levels | a C level and a Prolog level. The

C level consists of the WAM emulator and a small library of very low level system predicates

including input and output predicates. The rest of the system is written in Prolog itself, so user

programs and the runtime system coexist at the Prolog level throughout. This architecture is

shown in Figure 4.1.

SB-Prolog itself has its own notion of modules, but these are designed for a special purpose.

The Prolog level system is divided into a set of library �les, and only a few of these are loaded at

Prolog boot time | the rest are loaded only when needed. The system knows which library �le

to load when a predicate is required, as it is given a list of predicates each library �le exports. If

a predicate is required and is unde�ned, a check is made to see if it appears in any library �le's

export list. If it does, that �le is loaded and the erroneous call is retried. These are SB-Prolog

modules | the components are �les and the modules system is only used to drive the dynamic

loader. There is therefore no problem installing a new user-level modules facility on top of this

| both can coexist without conict.

The implementation of Modular Prolog proceeded in two phases. The �rst was a simpli�ed

1

This project does not alter the compiler in any way, only the interpreter, so the compiler package is ignored

throughout this discussion.

18

WAM Kernel Builtin Predicates

System Predicates

User Programs

Prolog Level

C Level

6

?

6

?

-

�

Figure 4.1: The Structure of SB-Prolog

version of the system, built as a test-bed and runs simply as a pre-processor system ; this is

described in chapter 5. The second was a full version of Modular Prolog ; this is described in

chapter 6.

19

Chapter 5

The Preprocessor Version

Early work on this project produced a very simple pre-processor version of the system which

read in a Modular Prolog �le and converted it to a Standard Prolog program in memory. A

simple interface allowed command line calls to be made.

I will not discuss the implementation of this version of the system in any depth, to leave more

space for a discussion of the major work on the full system. This chapter is only intended to

highlight problems with a simple preprocessing version of the system, which provided the ideas

and direction for the work on the full implementation.

This system basically implemented the semantic equations given in [SW92], and included

only a few of the changes made to the modules environment discussed in sections 3.2 and 3.3.

For example, there was no reloading of structures, and structure and sharing speci�cations were

still on one line.

In the preprocessing version a function was built which mapped every unique predicate and

function in the Modular Prolog program to a unique internal name. This mapping was used to

convert the original program to an equivalent Standard Prolog program. The internal names had

the form `functionN' or `predicateN', where N is a unique number. These names have no meaning

to the user at all and are only machine readable. The resulting programs, when translated into

Standard Prolog, looked something like the following :

predicate9(function7).

predicate39(V0,V1) :-

predicate13(V1,V0).

predicate39(V0,V1) :-

predicate14(V1,V2),

predicate39(V0,V2).

predicate39(V0,V1) :-

predicate15(V1,V2),

predicate39(V3,V2).

20

predicate10(function8(V0,V1,V2)).

predicate13(function8(V0,V1,V2),V0).

predicate12(V0,V1,V2,function8(V0,V1,V2)).

predicate11(function7).

The actual subset of Modular Prolog this system could handle was much smaller than that

of the full system described in the rest of this report. This was because system predicates like

name/2, =../2, functor/2, read/1, assert/1, retract/1, see/1, write/1 and listing/0 were not

integrated with the modules system, and produced inconsistent results. This had the e�ect of

reducing the usability of this system enormously (in fact, almost completely!).

A couple of the problems encountered in this system are discussed here. Firstly, consider the

following example :

structure one =

struct

fun a/0.

fun a/2.

test(X) :-

X =.. [a,1,2].

end.

To pick one particular scenario, the function one:a/0 is stored internally as `function23'/0 and

the function one:a/2 is stored internally as `function24'/2. The call to =../2 should create the

internal formof one:a(1,2). However, since =../2 does not interact with the modules environment,

=../2 will build the function `function23'(1,2) which is not the internal form of one:a(1,2).

Other problems are associated with input and output. Write/1 always prints the internal

form of a predicate or function constant, and so its output is not human-readable. Similarly,

read/1 can only accept input in internal form.

This system was slow, cumbersome, memory-intensive and could only support very small

Modular Programs (up to about a page long) before the system ran into memory problems.

This, together with the lack of integration between the system predicates and the modules

environment made the system impractical to use.

However, programs which did not use any of the extra-logical predicates of Prolog worked

correctly and the system allowed me to experiment with these simple modular programs. The

work on this version of the system also allowed adequate time to establish a close understanding

of the semantics of the modules system (given in [SW92]), an area I was unfamiliar with when

I began this work. This work was also valuable in that its foundations were later reused in the

version of consult/1 in the full Modular Prolog system.

21

Chapter 6

The Full Modular Prolog

This chapter describes a full implementation of Modular Prolog. This system was successfully

implemented on top of SB-Prolog, and is fully functional. There were several major issues

involved in the design and construction of this system. These were the representation of the

module environment, identifying objects local to structures, the treatment of predicates and

functions (and the distinction between them) and the integration of the extra-logical predicates

of Standard Prolog into the modules system. These are discussed in this chapter.

6.1 Representation of Module Environment

The paper by Sannella and Wallen [SW92] gives the detailed semantic equations which describe

the semantics of the modules environment. The implementation of consult/1 follows this seman-

tics closely and the actual data structures used in the semantics are almost identical to those

implemented. For example, Sannella and Wallen state that a signature is denoted by a triple

< substrs; preds; funs > where :

substrs : substructure names ! \internal" structure names

preds : predicate names ! \internal" predicate names

funs : function names ! \internal" functions names

This particular data structure is stored in consult/1 in the form :

sig([substructure ! internalname, ...],

[predicate ! internalname, ...],

[function ! internalname, ...])

The list of all signatures, structures and functors currently de�ned (called \environments")

are simply lists, which are eventually asserted into the database. Even the architecture of

the consult/1 program itself clearly shows the areas of the program which implement speci�c

22

semantic equations. This similarity between the semantics and the implementation makes the

task of proving the program is correct easier | important for a �rst working version.

However, there are disadvantages with this technique as well. Firstly, the denotational se-

mantics used to specify the system is elegant and compact, but does not lead directly to an

e�cient implementation. An e�cient implementation may stray far from the style introduced

by the semantics, and that implementation may be hard to �nd. Secondly, the data structures

themselves are very large and unmanageable. I introduced some basic data compression tech-

niques into the consult/1 program to reduce environment size, and to use the Prolog database

more e�ectively. Again, this a�ects e�ciency (time e�ciency is increased considerably as much

of the data is removed to the database, reducing the amount of data that is carried internally

in arguments ; space e�ciency is not altered at all, as I simply add data to the database during

processing instead of after processing has �nished). Lastly, the environments given in the seman-

tics only store the top level module constructs | the others are only implicitly given as parts of

the top level ones. This architecture makes the processing of sub-structures for operations like

listing/0 slightly tricky, and shows the need for a better data structure.

However, criticisms aside, the data structures are represented clearly in the same form as in

the semantics. The module constructs de�ned are eventually stored in clause form in the database

and de�ne the predicates $module structure/5, $module signature/5 and $module functor/10.

The clauses are stored in reverse order in the database simply so that a call to any of these

predicates returns the module construct most recently de�ned.

The result of a call to consult/1 is in two parts. The �rst is the environment which is

built into the predicates discussed above. The environment actually stores more than this

however, as declared functions (`fun X' or `fun X = Y') are stored in clauses for the predi-

cate $declared function/1, and `fun X = Y' declarations are stored in clauses for the predicate

$mapped function/4. This data is used by the extra-logical predicates. The second part is the

actual program code. This is a set of Standard Prolog clauses which is equivalent to the Modu-

lar Prolog program. This shows the close resemblance between the pre-processor version of the

program and the full Modular Prolog.

There are two structures declared automatically at Prolog boot time | the `pervasive' and

the `root' structures. The pervasive structure is the system structure and its signature contains

predicates like assert/1 and write/1 and functions like `[]'/0 and user/0. The root structure is

the top level structure in which command line queries are evaluated.

The modules environment itself can only be modi�ed through the use of consult/1. Extra-

logical predicates like assert/1 have been modi�ed to allow the user to alter the contents of

the individual structures, but structures, signatures and functors can only be declared through

consult/1. The environment itself is an ever-growing structure, and there is no way in which the

user can \retract" a structure.

23

6.2 Identifying Objects

Consider the following program :

structure a =

struct

fun a/1.

end.

structure b =

struct

fun a/1.

end.

The function a/1 is de�ned twice but in di�erent structures. Since we wish to distinguish

between the two, we need to internally represent all objects as a (structure tag x name x arity)

triple, instead of the simpler Standard Prolog method of representing them as a (name x arity)

pair. If we set up a function (structure tag x name x arity)! object tag, we can uniquely identify

each object in the system by an object tag (it was this kind of technique that was used in the

pre-processor version of the system).

The modules system itself creates an extra problem as it allows de�nitions like `fun X = Y'.

The basic trouble is that `fun X = Y' sets up a many-to-one function from actual name (X)

to uni�cation name (Y). The language must support this facility of uni�cation over functions

with di�erent names. However, although vital, this facility is not very commonly used and is

generally never more than a couple of levels deep

1

, so a complex representation strategy is not

necessary.

Standard SB-Prolog itself implements a system where a (name x arity) pair maps uniquely to

a single entry in the program symbol table. This means that even constants with the same name

do not map to the same symbol table entry if they have di�erent arities. The representation

makes uni�cation easy | two objects can only ever unify if they correspond to the same symbol

table entry. This, of course, makes uni�cation of items a simple pointer comparison.

The task of implementation therefore includes extending a (name x arity) pair to a (structure

tag x name x arity) triple which maps into the symbol table. The result must ensure that X

and Y still unify if we declare `fun X = Y', must be straightforward to implement and must not

hamper the speed of Prolog too much. There are several possibilities :

1. The �rst technique involves modifying the SB-Prolog symbol table entries so that each

object is not only represented by name and arity, but also by home structure tag. This

would not a�ect much of the Prolog run-time system and would reduce implementation

details from the Prolog level to the C level.

1

With the declarations `fun X = Y' and `fun Y = Z', Y is one level deep and Z is two levels deep.

24

In order to allow the handling of fun X = Y declarations, each symbol table entry would

also require a new �eld unifies_with which is a pointer to the symbol table entry for the

function it is been declared equal to. The uni�cation algorithm for the system would be

modi�ed to use the unifies_with pointer.

However, although this would lead to a fast and economical system which shows o� the

module system nicely (by identifying each object using a structure tag as well), it requires

changes at the C level which removes all chances of porting the system to other versions

of Prolog. Also, care must be taken when handling functions declared as follows :

fun a/2.

fun c = a.

fun b = a.

If we set the unifies_with pointer of c/2 to point to a/2 and the unifies_with pointer

of b/2 to point to a/2, then we must encode the uni�cation algorithm in such a way as

to ensure that c/2 and b/2 unify, even they they are only indirectly connected through

unifies_with pointers to a/2.

2. Another possibility is to store each object as the single name `tag1 name1$$tag2 name2',

where `tag1' and `tag2' are structure tags.

For example :

1 test

| {z }

1

$$ 202 test2

| {z }

2

(1) This part used for printing, etc.

(2) This part used for uni�cation.

This technique represents the home structure tag of the object, and the unifies_with

�eld explicitly in the text of the name. The arity of course will be present in the symbol

table entry anyway. If the name of the object is to be displayed, name1 is extracted from

the name and displayed. If the object is to be uni�ed with another, tag2 and name2 will

be used. Any functions not involved in fun X = Y declarations are stored in the simpler

form `tag name', with no need to include a uni�cation part.

However, there are many disadvantages with this method. It is very cumbersome to im-

plement and not very elegant. More importantly however, uni�cation will no longer be a

simple pointer comparison, but will involve comparing characters of the name, to extract

the uni�cation information. Since Prolog relies on uni�cation, the performance of Prolog

will fall by at least an order of magnitude, which is far from desirable.

This technique also su�ers from the same problem as in the �rst technique above when given

function declarations of the form fun c = a and fun b = a | the uni�cation algorithm

has to take great care when unifying the functions c/2 and b/2.

25

3. On a similar vein as above, each object could be stored in the form `tag name', but here

the structure tag and object name correspond to the uni�cation name of the object |

each function is stored in its uni�cation form only. For example, a function is declared

fun one/2 = two. When the function one/2 is created during a consult, or by some extra-

logical predicate, the function that is actually built is two/2. Therefore if the function one/2

is ever decomposed or printed, the name `two' is printed instead of `one'.

Note that this technique does not su�er from the same problem as the above two techniques

when given declarations of the form fun c = a and fun b = a simply because a/2, b/2

and c/2 will all be stored internally as a/2.

This method ensures that uni�cation is guaranteed over functions with di�erent names (as

they are all actually stored internally as the same function) without altering the Prolog

uni�cation algorithm and is relatively straightforward to implement.

However there are a few obvious problems. The major one is simply that under certain

circumstances it is tricky, if not impossible to get back exactly what you typed, as a

function may not be stored as you expect. This means that printing and decomposition

can only produce the `best' solution it can, which is not always what is required.

4. Lastly, a system similar to the preprocessor system could be scaled up to the full system.

Here every structure, predicate and function is stored as a unique internal name. A function

would be created to map each unique modular name to its internal name. This of course

means that we need to store function tables from modular name to internal name for use

by all the extra-logical predicates. These functions are large, would be slow in evaluation

and consume a lot of memory. Also, every extra-logical predicate would have to be heavily

modi�ed and performance of each would fall. In other words, this is totally impractical.

These factors were all taken into account, along with one overriding factor | if the changes

to the Prolog system only alter the Prolog code for the language and not the underlying C code,

then the system can be more easily ported to any other existing Prolog system. Since items 1

and 2 above require alteration to the low-level C code, and 3 and 4 do not, the choice �nally

implemented was 3. A full discussion of this method is given later.

In Modular Prolog however, the pervasive structure is treated slightly di�erently. Instead

of tagging each symbol in the structure, we simply leave all symbols untagged. This is how

pervasive terms are recognised | if there is no tag, then the symbol is pervasive. This has

several advantages. The �rst is that the original compiled version of the Prolog level system

need not be recompiled, but more importantly, the pervasive structure is used as a kind of trash

can for functions which belong to no other structure in Modular Prolog. For example, if a

function is created which contains no structure tag, it is hidden inside the pervasive structure

by the pervasive signature, so remains out of the user area of memory and safe. Modular Prolog

26

makes full use of the fact that untagged functions are hidden and many of the extra-logical

predicates use this `trash can' facility.

6.3 Predicates and Functions

One aspect of this modules system that is emphasized deliberately is the distinction between

predicates and functions. From a logical point of view, to be valid, a clause has to have the

following form :

predicateapplication :-

predicateapplication

1

,

.... ,

predicateapplication

N

.

where the arguments to each predicate application do not contain any further predicate appli-

cations.

However, most Prolog implementationsdo not have such a rigorous syntax and allow functions

and predicate applications to be placed anywhere. In SB-Prolog for example, predicate and

function applications can be used in any way you like, with a distinction made between them

only if a call is attempted to one. For example, if you pass a function application to call/1 it

will fail with an `Unknown predicate' error, whereas is you pass call/1 a predicate application,

you will never generate this error. This is the only di�erence between them and in fact, both

predicates and functions are stored in exactly the same way.

As mentioned earlier, I have chosen to impose the constraint that a constant cannot be both

a predicate and a function. This is justi�ed here :

We have module constructs that require functions and predicates to be explicitly declared,

so do we enforce a syntax as rigorous as the logical one, or do we follow the Prolog tradition of

allowing the programmer \to do what he/she likes"? There were several possibilities to choose

from :

Given a constant p :

1. p can't be used as a function and a predicate simultaneously (here, `function' and `pred-

icate' have the logical meanings | function applications can be used as arguments to

predicate applications, predicate applications cannot). If p is a function it can only be

used as a function. If p is a predicate it can only be used as a predicate.

This implies that the constraint that arguments to predicate applications must be function

applications has to be relaxed (as you have to pass a predicate application to call/1 for

example).

2. p can be used as both a predicate and a function. This means that you could enforce

the constraint that an argument to a predicate application must not be another predicate

27

application. If you want to assert a clause for the predicate p into the database, for

example, you have to declare p as both a function (so it can be passed to assert/1) and a

predicate (so you can call it).

3. As 2, but `clever'.

`Clever' means that arguments to predicates like assert/1 can be predicate applications,

but no others can. Further, if the user de�nes something like :

update(X,Y) :-

retract(X),

assert(Y).

the system will work out that the arguments to update/2 can be predicate applications

and use this new information when checking programs. This implies that predicates like

update/2 must be declared before any calls to that predicate are processed (or the system

will not recognize the new constraints).

The version I have implemented in my system is the �rst. Once a constant is declared

as a function, it is always a function (in the module in which it is declared). The second

version is rather clumsy and the third requires a lot of processing and requires knowledge of

system predicates which can accept predicate application arguments (this is system dependent

knowledge to some extent).

Relaxing the constraint that arguments to predicate applications cannot be further predicate

applications is important. First, it allows free use of assert/1 and retract/1, as well as user de�ned

predicates like update/2 (given above), but also makes the translation stage during a consult

simpler | if you know that a compound term is a function application or a predicate application,

but not both, it is a simple task to ensure that the correct internal form of the compound term is

used. Another added advantage is that if consult/1 knows at consult time whether a compound

term refers to a predicate or a function, it can do a certain amount of program checking. For

example, we can check that arguments to call/1 should always be predicate applications and not

function applications (which will always fail anyway). This extension, if implemented, would be

able to check for certain common runtime errors in large programs. (This is not implemented in

the current version of the system).

After making this decision I attempted to implement an environment in the Prolog system

which continued to emphasize the distinction between predicates and functions. I �rst of all

removed system predicates like structure/1 which refer to both function and predicate applica-

tions and replaced them by function/1 and predicate/1. These predicates have the same basic

semantics as structure/1 but have been extended | function/1 succeeds only if the argument

is bound to a function application and predicate/1 only succeeds if the argument is bound to a

predicate application.

28

In SB-Prolog, if you de�ne a function, say `fun test/0', it is regarded as a function by SB-

Prolog. However, if you perform an `assert(test)', then SB-Prolog regards test/0 as a predicate.

This is somewhat counterintuitive; if you have declared an object as a function, then you expect

it to remain a function. To prevent these minor irregularities, I have now placed constraints on

the use of the assert and retract family of system predicates | arguments to these predicates

can no longer be function applications of functions declared during a consult. In other words :

| ?- consult(user).

[Opening user]

fun test/0.

Updating database ...

[Closing user]

yes

| ?- assert(test).

*** Error : Cannot assert test/0 it has been declared as a function

no

Note that if test had not been de�ned by a fun test/0 declaration, the following would

happen :

| ?- function(test).

yes

| ?- assert(test).

yes

| ?- predicate(test).

yes

| ?- function(test).

no

The �rst call to function(test) succeeds as test/0 is created as a function by SB-Prolog as

a side-e�ect of parsing. Any unknown compound term that is created (by parsing input or by

some extra-logical predicate) is regarded as a function by SB-Prolog.

This restriction on the assert family is to stop unexpected results arising when a function

declared as a function by a fun X or fun X = Y declaration suddenly becomes a predicate.

6.4 Extra Logical Predicates

One of the main aims of this project was to experiment with the extra-logical facilities in Prolog,

and to �nd a suitable method of integrating them with the modules environment. This is

a challenging problem because it is at this point we discover whether the choice of internal

29

representation of modular constants is the correct one, and more importantly, by integrating the

extra-logical predicates with the modules environment we turn the Modular Prolog system into

a full, usable system, rather than a toy one (as the pre-processing version was).

The next few sections describe various types of extra-logical predicate and how they interact

with the module environment. I begin by describing term manipulation predicates such as

=../2, functor/3 and name/2, then predicates that have been extended to operate in remote

structures, such as call/1, assert/1 and retract/1 and then discuss input and output predicates

such as read/1 and write/1. I complete this discussion by overviewing other predicates that are

available but do not warrant detailed discussion.

6.4.1 Term Manipulation

There are several \term manipulation" predicates within Standard Prolog, predominantly =../2,

functor/3 and name/2. Since I have settled on an internal representation of functions where

functions are actually stored as their uni�cation form, these system predicates have to reect

this.

It is important to point out at this point that although programs are rigorously checked by

consult/1 when they are loaded to ensure that all functions that are used are declared, no such

checks are performed by the other extra-logical predicates. If a call is made to an extra-logical

predicate to create a function, that function will be created regardless of whether it has been

declared in advance or not. This freedom is important when using Prolog to its full power.

I begin this discussion by de�ning some terminology. If we have a declaration

fun X = Y.

we call Y the uni�cation form of X and call X the print form of Y. We can then de�ne functions

from print form to uni�cation form and from uni�cation form to print form, which can be used by

the above term manipulation predicates for extracting the correct forms of a function. However,

there are problems to overcome when building these functions. Since we can declare functions

such as the following

fun X.

fun Y = X.

fun Z = Y.

we have to ensure that the function from print form to uni�cation form selects the uni�cation

name to be the transitive closure of the declarations. Here, for example, the uni�cation form

of Z is X. This example also shows a problem with the function from uni�cation form to print

form | there may be more than one equally plausible result. For example, the print form of

X could be X itself, or Y, or Z. To select the `best' solution out of the possibilities I use the

following rule: `always select the most recently declared print form for a given uni�cation form

30

out of those declared in the current structure'. So, for example, the print form of X is Z in the

above example. Whenever a term is created, the function from print form to uni�cation form is

applied to �nd the correct form to use, and whenever a term is decomposed, the function from

uni�cation form to print form is used.

This is exempli�ed by the following example :

structure one =

struct

fun a/2.

fun b = a.

....

end.

structure two =

struct

fun c = one:a.

....

end.

structure three =

struct

....

end.

If either of the functions one:a/2, one:b/2 or two:c/2 is created, the uni�cation form is

one:a/2 and so one:a/2 is the actual function created. However, if a term built using one:a/2

is decomposed, the result depends on the structure in which the decomposition is made. If the

term is decomposed inside structure `one', the most recently declared print form of one:a/2 is

returned (which is one:b/2). If the term is decomposed inside structure `two', two:c/2 is returned

instead. If no valid `fun X = Y' declarations apply, as in structure `three', then one:a/2 is simply

returned.

The extra-logical term manipulation predicates use these ideas. Take for example the predi-

cate functor/3. (Due to the unfortunate name of this predicate, which has modular connotations,

it has been renamed compound/3 in Modular Prolog). In Standard Prolog, a call to functor/3

of the form

| ?- functor(Function,Name,Arity)

has the declarative reading `the function application Function has name Name and arity Arity'.

In Modular Prolog, this has the same meaning, but the implementation is more complex. For

example, if we make the call

| ?- compound(test(1,2),Name,Arity)

31

we must remind ourselves that test/2 is stored internally as its uni�cation form. In order to

retrieve the name of test/2 again from the uni�cation form, we must use the function from

uni�cation form to print form to get the correct form to perform the compound/3 operation on

(note that this is not guaranteed to get back test/2 itself). After performing the operation we

must consider the fact that the resulting name is itself a function test/0, and so we must apply

the function from print form to uni�cation form for that function, in order to return the correct

result. This processing is performed completely automatically by the Prolog system and the

user, for most purposes, only requires a passing knowledge of these ideas to ensure that these

predicates are used correctly.

This seems somewhat complex, but since `fun X = Y' declarations are not that common,

these checks are very often trivial. The predicates name/2 and =../2 follow a similar reasoning.

Considering a larger example, take the following program :

structure three =

struct

fun aa/2 and bb/0.

fun bb/2 = aa.

fun cc/2 = bb.

test :-

X =.. [bb,1,2],

X =.. [bb,1,2].

test(X) :-

Y =.. [bb,1,2],

Y =.. [X,1,2].

end.

structure four =

struct

inherit three.

fun ff/0.

fun ff/2 = three:bb.

test :-

X =.. [ff,1,2],

X =.. [ff,1,2].

test(X) :-

Y =.. [ff,1,2],

Y =.. [X,1,2].

end.

Briey summarizing the results, we �nd that a call to three:test/0 succeeds, but a call to

32

three:test(X) uni�es X to three:cc/0 (and not three:bb/0) as the uni�cation form of three:bb/2

is three:aa/2 and the print form of three:aa/2 is three:cc/2. A call to four:test/0 will succeed

and a call to four:test(X) binds X to four:�/0 as the uni�cation form of four:�/2 is three:aa/2

and the print form of three:aa/2 is four:�/2 (as we are now in the structure `four').

From an implementation point of view, there is a di�culty here | each of the predicates

mentioned above require knowledge of the structure in which they are used in order to work out

the results of the function from uni�cation form to print form correctly. This is implemented

by extending each of the above predicates to an equivalent form with an extra argument, which

corresponds to the current structure tag. Since this is rather awkward for the user to handle,

the Prolog system automatically places the extra argument into the calls to the predicates that

require it. Any program clauses given to consult/1, call/1, assert/1, retract/1 and the command

line undergo these automatic transformations so that the user does not need to consider them.

This does mean however, that a program may look di�erent from the original form typed in (the

system predicate listing/0 will always list the transformed version), but it is a necessary addition.

(There are other predicates in the system which insist on extra structure tag arguments too |

these are mentioned later.)

This is the major additional complexity created by my representation of functions. However,

as mentioned earlier, `fun X = Y' declarations are rare, and the predicates that manipulate

them even rarer. Other representations I have considered su�er from other problems, and so my

method seems satisfactory.

There is further complexity involved in the term manipulation predicates | the pervasive

structure. Since the pervasive signature is implicitly imported into every structure and since

its contents can be used without quali�cation, the term manipulation predicates must recognise

when a pervasive compound term is built or decomposed and take the necessary action. For

example, consider the call :

X =.. [assert,test]

This would build the predicate application `assert(test)'. However, the function assert/0 used

in the argument is not pervasive, but assert/1 is. The code for =../2 must spot this and build

the result appropriately (i.e. ensure that assert/1 is untagged which identi�es it as pervasive)

so that a call to assert can be made.

The complexity of these predicates is a direct result of the modules system. However, this

discussion is required only for implementation purposes | all the above processing is performed

automatically by the system.

6.4.2 Remote Structure Operations

There are several system predicates that can be naturally extended to operate on structures

other than the one in which the call was made. These are the database manipulation predicates

33

assert/1 and retract/1 and the predicate call/1. Extensions to these predicates were proposed

by Sannella and Wallen in [SW92]..

Each of the above predicates now accepts a structure tag as an extra argument and the

operation they perform is done with respect to the structure indicated by that tag. Say the

structure tag of a structure `a:b' was X, the call

assert(data(fred),X)

is equivalent to the call

assert(a:b:data(a:b:fred))

This extension adds considerable power to the database predicates and is extremely useful

when constructing database applications and the like. From an implementation point of view,

this is a simple operation. If a remote structure tag is given, the clause is physically moved to

the new structure before it is asserted into the database. However, an important restriction is

imposed on the type of clause which is acceptable to these predicates | all the predicates and

functions contained within that clause must belong to the same structure. In more technical

terms, the structure tags of every predicate and function within the clause must be equal. This

means, for example, that a call like the following is illegal

assert(data(names:fred),X).

and the call fails displaying a warning message. This is because the predicate data/1 does

not belong to the same structure as the function names:fred/0. The function `names:fred' is

classed as an outer-structure reference as the function refers to a structure other than the source

structure (which is the home structure of the predicate in the head of the clause, i.e. data/1).

There are several reasons for imposing this restriction :

� The programmer is encouraged not to perform dirty tricks using this form of assert. Impos-

ing this restriction hopefully results in a better programming style. The database should

used sparingly anyway, as it reduces program clarity greatly.

� To illustrate one potential problem if these outer-structure references were legal, take the

following example :

structure c =

struct

data(one).

end.

structure a =

34

struct

structure b = c.

....

end.

Consider the command line query :

| ?- structure(X,a), assert(b:data(two),X).

This would assert a second clause into structure `c'. (The call structure(X,a) returns

the structure tag of `a'). However, the command line parses all input with respect to the

top level structure. Since there is no structure `b' de�ned at the top level, the command

line cannot dereference the modular path `b:data' and therefore cannot accept this call.

This is a di�cult problem to overcome.

� Another problem is a simple one, as follows. Consider the following program :

structure a =

struct

data(one).

end.

structure b =

struct

more_data(one).

end.

If the following call was attempted

| ?- structure(X,a), assert(data(b:two),X).

assert could not assert the clause into the database, as structure `a' has no substructure

`b' which the data `b:two'/0 could refer to. It is a trivial task to check this, but time

consuming.

� There is yet another problem, exempli�ed by the following example :

structure one =

struct

structure two/sig1 =

struct

35

test.

end.

structure three = two/sig1.

example :-

structure(Tag,four),

assert(test(three:data),Tag).

end.

structure four =

struct

structure two =

struct

test.

end.

structure three =

struct

test.

end.

end.

(Note that `one:two' and `one:three' will share the same structure tag while `four:two' and

`four:three' will have di�erent structure tags.)

Consider a call to the predicate one:example/0.

Remembering that test/1 and three:data/0 are stored internally as tagged terms, the basic

task of the call to assert is to `decompile' the clause to determine the structures in which

its constituent parts belong and `recompile' the same clause in structure 'four'. When we

check the structure tags of the components of the clause in the call to assert, we �nd that

test/1 belongs to structure `one' and three:data/0 belongs to structure `one:three'. So far

we have built the clause

one:test(one:three:data)

from its internal (tagged) representation. We now move the clause to structure `four' which

simply involves replacing `one' by `four' in the above clause and asserting

four:test(four:three:data)

into the database to complete the task.

36

However, the task is not that simple. Structure `one:two' and structure `one:three' share

the same structure tag, so we could equally well select substructure `two' instead of sub-

structure `three' in the decompilation stage and attempt to assert

four:test(four:two:data)

into the database instead. This would give a completely di�erent result, with no clear

method of distinguishing the best solution.

If the restriction suggested above were imposed, the system would not encounter such

problems as every predicate and function in the clause would belong to the same structure.

This kind of problem cannot be resolved easily. Notice however, that if we did not

change the semantics of a structure X = Y/Sig declaration (discussed in section 3.3)

and retained the version in [SW92] where the new structure had a di�erent tag to the

old, this problem would not appear (though it would still appear if the program read

structure X = Y without the signature constraint). This is an example of the intricacies

involved in the design of the module environment.

These are the major reasons why the restriction described above is enforced.

It is important to clarify the use of assert/2 as this point. Take the following example :

structure a =

struct

data(one).

end.

structure b =

struct

another_predicate.

end.

The following is a series of calls to assert/2 along with a description of its action and why.

Throughout, the variable Tag is the structure tag of structure `a'.

1. assert(data(two),Tag) Asserts the clause a:data(a:one) into the database.

2. assert(b:data(b:two),Tag) Asserts the clause a:data(a:one) into the database. The

clause is legal, as all predicates and functions in it belong to the same structure, so the

clause is simply moved to structure `a' and asserted.

3. assert(data(b:two),Tag) Fails and displays an error because the clause passed to it

contains a function (b:two/0) which does not belong to the same structure as the predicate

(data/1).

The discussion relating to retract/1 and call/1 is identical and shows that the restriction

imposed is there for good reason and not simply to make implementation easier.

37

6.4.3 Input/Output

The next major set of extra-logical predicates available in Prolog are the input and output

predicates. I discuss these in this section. To simplify the discussion, I am only concentrating

on the predicates write/1, writename/1 and read/1.

The system predicate write/1 is the general term printing routine for Prolog. The new version

works in exactly the same way as before, but when write/1 prints out a function or predicate

application, it �nds the name of the structure to which the term belongs and prints out the

pathname of that structure instead of simply the structure tag. Any term in the root structure

or pervasive structure is printed without a module name or tag. For example :

| ?- write(test(1,2)). % Test/2 is in the root structure.

test(1,2)

yes

| ?- write(assert(test)). % Assert/1 is pervasive.

assert(test)

yes

| ?- write(a:test(1,2)). % Assuming structure `a' has been declared.

a:test(1,2)

yes

When two names correspond to a single structure, as in the following program :

structure one =

struct

fun blah/0.

...

end.

structure two = one.

write/1 will display the name which corresponds to the last structure declared. For example

| ?- write(one:blah).

two:blah

It makes no di�erence that the structure you typed may not be the same structure which

is printed, simply because you have declared the structures to be equal anyway. The choice of

name to print is not important and the last is always printed to be consistent.

Since each structure has a signature which identi�es which predicates and functions are

available for use by external structures, it might be reasonable to modify write/1 to display only

terms that are not hidden by a signature. However, there a number of reasons for not doing this:

38

� The output of write/1 would depend on the structure in which the call was made. For

example, if the function X were hidden inside structure Y by Y's signature, and an attempt

were made to print X outside Y, then nothing (or some special token) would be printed

as X is hidden. However, if an attempt were made to print X inside Y, X is not actually

hidden, so can be printed. This means that write/1 would have to be extended in much

the same way as the term manipulation predicates above so that the current structure tag

could be passed to it.

� Every time a term was to be printed, its tag would have to be found, the signature for the

structure corresponding to that tag would have to be generated, then checks made to see

if the term was in fact hidden. This would reduce the speed of write/1 enormously.

� Finally, if write/1 were to print only visible terms, then the programmer would have to

specify in advance which functions or predicates he/she will want to print at runtime. This

is very awkward and the programmer would lose the exibility o�ered by write/1 when

debugging programs for example, making the system di�cult to use.

Write/1, for the reasons outlined above, retains its ability to print any term which is passed

to it, regardless of whether that term is hidden or not.

Another term printing predicate is writename/1. This predicate is actually a simple form of

write/1, and can only print numbers, variables and atoms. If it is passed a compound term as

an argument, it will only display the name of the term, not the arguments. I have re-written this

predicate so that it makes no attempt to print module paths, and simply throws away any struc-

ture tag information passed in the argument. The reason for this is simple and came to light when

constructing example modular programs for the system. Almost every program will output data

to the screen in some form or other, and more importantly,many programs print friendly prompts

and text messages to make the program more user friendly. In these cases it is undesirable to see

text such as `Please type your name' displayed as `database:search tree type0:get data:Please

type your name' or `134 Please type your name' simply because the text occurs in a deeply

nested structure. Writename/1 is therefore used to display non-compound terms with no mod-

ule path information to provide a better user interface.

The last major input/output predicate discussed here is read/1. Read/1 shares many of the

problems that the term manipulation predicates do, as well as having some of its own. For

example, one of the tasks the read/1 routine has to do is check that any function applications

typed are not involved in `fun X = Y' declarations. If they are, the appropriate uni�cation form

has to be returned.

When read/1 accepts input in Modular Prolog, no checks are made to ensure that a function

typed has been previously declared | any input is accepted. The only restrictions imposed are

that the term must be syntactically correct and any modular paths within the term must exist

with respect to the current structure. For example :

39

| ?- read(X). % read/2 has not been previously declared.

test(1,2).

X = test(1,2)

yes

| ?- read(X).

a:b:test(1,2).

*** Error: Unknown structure a : b during read

One problem encountered with read/1 is the fact that its input has to be read in with respect

to the current structure. If the user types an atom, say `fred', the read/1 routine must tag that

atom with the tag of the current structure. Similarly, if the user types `one:fred', the read/1

routine must dereference the module path with respect to the current structure, to get the correct

result. Read/1 is therefore one of the class of predicates that require an extra current structure

tag argument to work correctly.

Operators are another problem for read/1. Should operators have e�ect only inside the

structure in which the operator declaration was made? For example, consider the program :

structure one =

struct

fun infix/2.

:- op(100,xfx,infix). % Create infix operator.

...

end.

If the operator declaration had a local e�ect (was only e�ective within the structure in which

it was declared), the function in�x/2 could only be read in in�x form within the structure `one'.

Similarly, the function in�x/2 would only be output (using write/1) in in�x form within the

structure `one'. This leaves both read/1 and write/1 dependent on the structure in which they

were called, which is awkward to manage. All operator declarations are therefore considered

global | if any function is declared in a local structure as a pre�x, post�x or in�x operator,

then that function will be printed out or read in using that operator declaration, regardless of

where the input/output operation is performed. To clarify, consider the following :

| ?- consult(user).

structure a =

struct

fun test/2.

:- op(500,xfx,test).

end.

40

yes

| ?- read(X).

a a:test b.

X = a a:test b

yes

| ?- read(X).

a test b.

*** syntax error *** % The function test/2 in the root

a <<here>> test b % structure is not infix.

Operators are tricky to handle in this version of Modular Prolog and technical di�culties

mean that operators cannot be used by �les which are to be loaded by consult/1. This is

awkward, but there are two reasons for this. Firstly, consult operates by loading a �le into

memory in one operation, then processing that �le after the read is complete. This means that

any calls to op/3 to de�ne operators inside the �le are not actually processed until after the

loading is complete | to late to be of use in the �le itself. This means, for example, that the

following program will not be acceptable to the parser :

structure test =

struct

fun operator/2.

:- op(500,xft,operator).

test :-

write(a operator b), nl.

end.

If the parser executed any op/3 declarations as the �le was read in, this problem would be

solved. However, the parser itself cannot execute the op/3 declaration as it is read in, simply

because the function operator/2 has not yet be created, and more importantly, the structure

`test' has not yet been created or assigned a structure tag. To get round this problem, the parser

and the consult/1 code would have to be combined, which is tricky.

The second problem occurs for a similar reason. To simplify the processing of �les, the entire

�le is read into the pervasive structure, then clauses are moved to the correct structures as they

are processed. This means that any operators de�ned in the top level structure cannot be used

by a consulted �le as the �le is not read into the top level structure, but the pervasive structure

instead.

These problems mean that operators cannot be used by consult/1 (which is an undesir-

able restriction), but the work involved in rectifying the problem is considerable. The current

41

architecture is clear and well-structured and any deviation from this would lose this clarity.

6.4.4 Other Bits

There are many other system predicates which have been modi�ed to work in the Modular

Prolog environment. I will not discuss any more in detail, as none of them introduces any new

concepts, but I will list some of them to give a avour of what the new Modular Prolog has to

o�er.

� assert(Clause,Structuretag)

retract(Clause,Structuretag)

retractall(Clause,Structuretag)

These database manipulation predicates now accept a second argument which is a structure

tag, and can operate on remote structures as well as their own.

� consult(File)

consult(File,Options)

consult(File,Options,Preds)

Consult has three forms, with one, two or three arguments, which perform the same tasks

as the old consult in Standard SB-Prolog. The �rst argument is the �lename to use, the

second is a list of options (`v' for verbose loading and `t' sets up trace points on all the

predicates loaded during the consult), and the third argument returns a list of all the

predicates loaded into the database.

� listing

listing(Predicate)

list module(Structuretag)

listing/0 now lists out all the top level structures, signatures and functors, and list module/1

can be used to selectively list certain modules. listing/1 works as in Standard Prolog, and

lists the clauses for the predicate given to it as an argument (in the form name/arity).

Note that listing/0 attempts to list the contents of the database as it was read in, but the

listed output is not detailed enough to be used as input for a future consult.

� pervasive(Function or predicate)

pervasive function(Function)

pervasive predicate(Predicate)

Allows the user to obtain the functions and predicates in the pervasives signature.

� signature name(Name)

functor name(Name)

structure name(Name)

42

Allows the user to obtain the names of the module constructs currently loaded which were

declared at the top level.

� structure(Structuretag,Name)

structure(Structuretag,Name,Withrespectto)

current structure(Structuretag)

Allows the user to �nd the structure tag of any structure. All three are given an extra

structure tag argument automatically by the system in order to work correctly. This means

that the de�nition of current structure/1 reduces to a simple current_structure(X,X).

Structure/2 is a special case of structure/3 where results are obtained with respect to the

root structure.

As an example of these predicates in operation, consider the following:

structure a =

struct

test(X) :-

current_structure(X).

end.

structure b =

struct

structure b = a.

test1(X) :-

structure(X,b).

test2(X) :-

current_structure(Y),

structure(X,b,Y).

end.

Say the structure tag of structure `a' is 45 and the tag of `b' is 46. A call to a:test/1 returns

45. A call to b:test1/1 �nds the structure tag of `b' with respect to the root structure and

so returns 46. A call to b:test2/1 �nds the structure tag of `b' with respect to structure

`b' and so returns 45.

These predicates were proposed in [SW92] and are vital to allow other extra-logical predi-

cates like assert/2 to operate in remote structures.

� dismantle name(Term,Name,Structuretag)

Here, if Atom is an atom then Name is bound to the name part of Atom (Name has no

tag) and Tag is bound to the structure tag of Atom. Alternatively, if Name is bound (to

an untagged atom) and Structuretag is bound, then Atom is bound to the atom whose

43

name is Name and whose structure tag is Structuretag. This can be used to move atoms

between structures. For example, the following call moves an atom X to a structure whose

tag is New :

dismantle_name(X,Name,_), % Remove the old tag.

dismantle_name(NewX,Name,New). % Add the new tag.

In addition to these predicates, facilities for tracing are also available, as well as other less

important features.

6.5 Performance and Portability

In this section is briey discuss the performance of Modular Prolog in comparison to Standard

Prolog in both memory consumption and execution time and then go on to discuss the portability

of the system.

When testing the performance of Modular Prolog, I used the Eight Queens program given

in appendix C. A version of this program was created which would run under Standard SB-

Prolog, with no modules, as a comparison. This is also given in appendix C. To time the

operation of consult/1, I loaded a large (non-modular) benchmark program using both versions

of Prolog. Figure 6.1 shows the results of my experiments. Execution times were calculated on

ten consecutive runs of the depth �rst search solution to the eight queens problem. Memory

consumption was calculated as accurately as possible but the SB-Prolog dynamic loader makes

the task very complex. The memory consumption �gure for Standard Prolog is accurate, but

the Modular Prolog �gure is only an estimate.

Memory Consumption Execution Time Consult Time

(bytes) (seconds) (seconds)

Standard Prolog 570 43 91

Modular Prolog 2000 43 189

Figure 6.1: Performance of Modular and Standard Prolog

As is clearly shown from the results, execution time is not hindered in any way by the modules

system. This result is not surprising as consult/1 simply translates the Modular Prolog program

into Standard Prolog and so imposes little or no overhead in runtime performance. However,

if a program which made extensive use of the extra-logical predicates was tried, then a small

reduction in performance may be observed.

Memory performance is poor in the modules system. Again, this is no surprise. As well

as storing the program code, the modules system has to store the module environment data.

Another problem occurs because the new modular consult loads the �le initially into the pervasive

structure and then moves the program to the correct structures during processing (this was

mentioned in section 6.4.3). However, this moving operation is actually a copy and so there are,

44

in most cases, two copies of each predicate and function name in the symbol table, one untagged

(pervasive) version and one tagged (local) one. This is an important memory problem.

However, memory usage aside, Modular Prolog is not hampered in any way by the modules

environment and executes as fast as Standard SB-Prolog, only slowed by the dramatic increase

in processing necessary to perform a consult (as can be seen in the table).

There are several aspects of the modules system that must be considered when discussing

the portability of the system to other versions of Prolog.

The representation of predicate and function symbols in the modules environment was chosen

partly because it is easily portable to any version of Prolog. The modules environment itself is

simply a series of Prolog clauses corresponding to each modular construct declared, and so again

this can be directly implemented in any other version of Prolog.

However, there are parts of the module system which cannot be so easily ported. The most

obvious is the contents of the pervasive signature and the treatment of the pervasive structure.

Di�erent versions of Prolog have di�erent sets of system predicates available to the user and so

the contents of the pervasive signature and the nature of the pervasive structure will change.

The interaction of the extra-logical predicates with the modules system is the only other

major consideration. There are many extra-logical predicates which cannot be used with the

modules system at all, or have special cases which do not appear in Standard Prolog. These

predicates often require rewriting to operate correctly. In order to convert all the extra-logical

predicates available in a version of Standard Prolog to their modules system equivalents, they

have to be considered one-by-one and changed appropriately, retaining compatibility with other

parts of the original system that may use them. This is what I did with SB-Prolog and is

probably the most time-consuming part of the process of implementation.

The system is, on the whole, written in a way that makes it easily portable and could, with

a little work, be implemented on any other Prolog system.

45

Chapter 7

Using Modular Prolog

Modular Prolog at �rst glance has the same look as Standard Prolog, and provides much the

same facilities. However, due to the changes made to the extra-logical predicates of SB-Prolog,

many Standard Prolog programs cannot be executed without modi�cation. Having said this,

many existing programs will be compatible with the modules system and can still be used.

There are other interesting points to note about the operation of Modular Prolog. Firstly,

module paths speci�ed by colons are only acceptable to the system predicates read/1 and con-

sult/1 and nowhere else. Since these predicates convert any module paths into structure tags

and build the correct internal names for predicates and functions, module paths do not actually

exist at all at runtime, and can be regarded at a consult time concept which is replaced by

structure tags for execution. Any clauses containing colons (:) which cannot be processed as

valid module paths are regarded as illegal and are disallowed.

Secondly, the command line in Prolog normally displays a list of all variables in the call along

with their bindings if the call returned successfully. The new Prolog displays results in a similar

way, but any items in the result which are hidden inside substructures (because they are hidden

by a signature), are displayed as `...' instead. This emphasizes the use of abstract data types

in the new Prolog. It should be noted however, that since the signature of a structure is built

by consult/1, and never changes, any undeclared functions created by calls to the extra-logical

predicates are also hidden. This should be kept in mind. As an example of the command line in

operation, here we make a call to the structure `stack2' de�ned in chapter 2 of this report. The

result shows the hiding operation in action :

| ?- stack2:newstack(X),

stack2:push(X,1,Y),

stack2:pop(Y,Z,Popped),

stack2:isempty(Z).

X = ...

46

Y = ...

Z = ...

Popped = 1

yes

Lastly, the user has to keep in mind structure tags when performing uni�cation. A common

mistake would be to accept input from the keyboard in one structure and compare the input

with data listed in the database inside another. This of course will never succeed as the data in

these structures are mutually disjoint (as they are represented by di�erent structure tags). The

best way to avoid this is to make sure all data is read in inside the structure that contains the

data.

This is highlighted by the following example :

structure data =

struct

fun fred/0.

acceptable(fred).

read_in(X) :-

read(X).

end.

structure test =

struct

inherit data.

test1 :-

read(X),

data:acceptable(X).

test2 :-

data:read_in(X),

data:acceptable(X).

end.

If `fred' is typed in response to the input needed for test:test1/0 and test:test2/0, we �nd

that test:test1/0 fails but test:test2/0 succeeds.

I expect that mistakes like this will be frequent.

This confusion may be less easy to detect when comparing terms in the root structure with

terms in the pervasives structure. Both are displayed by write/1 in the same way (no module

name or tag is given), and so the user may miss the fact that they belong to di�erent structures.

The user should keep in mind which constants are regarded as pervasive, which actually includes

functions such as a/0 and memory/0 which are not obviously pervasive.

1

1

a/0 is actually a compiler ag and memory/0 is an option for obtaining system data via statistics/2.

47

There are many eccentricities introduced when extra-logical predicates interact with the

modules environment. These are too numerous to mention, and are generally obvious when

considered closely. The following example illustrates one of these :

structure b =

struct

...

end.

structure a =

struct

structure b = a.

...

end.

structure a =

struct

...

end.

If you attempted to print an atom that originated in the old structure `a:b', you get `a:b:atom'

printed. Since structure `a' has been rede�ned, and contains no substructure `b', there seems to

be an inconsistency. This result can be spotted when using other extra-logical predicates too,

and is because the module environment is a continually expanding data structure, which never

contracts | copies exist of all previously de�ned structures, signatures and functors, even those

which can no longer be used. It is only if a stale structure tag is presented to the system that

such apparent inconsistencies arise.

48

Chapter 8

Future

There are many areas in which this project could be extended in the future, so I have devoted

this chapter to listing some of them. Although the modi�cations and extensions suggested here

vary immensely in complexity, they are not presented in any particular order.

The �rst suggestion is a simple measure to allow better structure tag validation. Just now,

structure tags are simply integers and so it is easy for a rogue program to generate a random

tag and use it to assert, retract or call predicates in a random remote structure. A more secure

system would set up structure tags as a new distinct datatype and disallow operations such as

the arithmetic ones to be performed on them. This is a very simple runtime safety measure.

One optimization that could be introduced is briey described in Sannella and Wallen's

paper [SW92]. Each time a functor is applied, the code within its body is duplicated in the

database. This seems to be a waste, and techniques could be introduced to overcome this

problem. However, as Sannella and Wallen point out, the number of functor applications is

likely to be small and alternative techniques are often undesirable (for example, using explicit

calls). David MacQueen describes an algorithm for Standard ML modules in his work which

allows all structures produced by functor application on the same functor to share one copy of

the functor code (see [Mac88]). A similar idea could be done in Modular Prolog.

The data structures used for storing the module environment are currently a simple imple-

mentation of those used by the semantic equations in [SW92]. This is not the most e�cient

representation (in time and space) and an improvement could be found which is more exible

and less memory and processor intensive.

The current version of listing/0 attempts to produce an output which looks like the �le as it

was read in. However, the output is not in a format that is acceptable to consult/1 for reading.

A better version of listing/0 would output a listing in a form suitable for consult/1 so that the

program could be re-read at a later date. This would require more information to be stored,

and more processing to be done on the module environment data. Two of the major faults

in the current version of listing/0 are as follows (there are many other minor ones as well).

49

Firstly, listing/0 only displays top level structures and no substructures. If it were to display

substructures in a naive implementation, large chunks of code would be repeated. For example :

structure a =

struct

....

end.

structure b = a.

would print the code in `....' twice for structures a and b which means that if a listing of the

program were read in, structure `a' and `b' will no longer be the same structure, but distinct

ones. Secondly, the order in which the output is displayed bares no relation to the dependency

order which exists in the original modular program (each construct has to be declared before it

is used). This would require the use of planning algorithms to construct display orders. There

are many other problems which make implementation of such a system very di�cult, but there

are too many to discuss here.

Another suggestion made by Sannella and Wallen in their paper was the addition of a type

checking system for Prolog. There are a number of suggestions for type checking systems, such

as the one by Mycroft and O'Keefe [MO83] and the one by Horiuchi and Kanamori [HK87]

These could be incorporated into the modular system without much trouble. However, there

are decisions to be made about how the type checking system responds to Prolog's extra-logical

predicates. Should the system be a consult time checker only or should individually asserted

clauses be type-checked as well? At a basic level however, installation of a simple type checking

system is a relatively straightforward task.

SB-Prolog is an interpreter and compiler system, and so far I have only discussed the modules

system interacting with interpreted Prolog programs (I have only used the compiler for system

development purposes). Extensions could be made to the compiler to enable it to accept modular

programs allowing programs to gain performance by compilation. However, we need to decide

how to handle separately compiled sections of modular code as structure tags have to be unique

with respect to the runtime environment and cannot be generated at compile time. This means

a full compilation from program text to Warren Abstract Machine instructions may not be

possible. Also, module environments need to be included in the compiled �les, so later programs

can use the constructs that they de�ne. These are the kind of problems this extension would

have to overcome.

When new structures are allowed to replace old ones, we have to consider what happens

to structures that can no longer be accessed and are redundant (this happens regularly if the

same �les are continually consulted). In Standard ML, the garbage collector removes these

structures from memory and reclaims their space. A similar garbage collector could be designed

50

for Modular Prolog which tidies up the program areas of memory when necessary

1

. Space savings

from carrying out these garbage collections can be considerable.

The modules system itself resembles an object-oriented programming environment if we con-

sider a structure as an object and the clauses within it as the operations that can be performed

on that object. If we had facilities to dynamically create and destroy structures, we could develop

a Prolog-style object-oriented programming environment.

Dynamic binding of modular paths is another future possibility. By dynamic binding of

modular names, I mean the ability to form pieces of code like the following :

structure one =

struct

structure a = alpha.

structure b = beta.

test(Data) :-

select_a_or_b(X),

X:get_data(Data).

...

end.

where the structures in path names need only be bound at run time, not statically at consult

time. This can add considerable exibility to the system.

Note that the addition of dynamic modular paths in the head of a clause is of little use and

can lead to unde�ned results. For example,

testpredicate(X:test) :-

write(X),nl,

X:predicate(X:test).

could be used to get the home structure of the argument, print out that name and �nally call

predicate/1 inside that structure. For this to operate correctly, the head of the clause would

have to bind X to the textual name of the structure instead of a simple tag. However, there can

be many possible values of X if declarations like

structure one = two.

are used. Similar problems are encountered with calls to =/2. For example, the call

X = Y:test

su�ers from exactly the same problems as the predicate testpredicate/1 above where there could

be many equally valid results. I believe that the problems encountered in the implementation of

1

The current version of SB-Prolog has no garbage collector at all for the program space and the garbage

collector for the heap is buggy and out of action!

51

allowing unbound paths in the head of a clause outweighs the rather fewer advantages. I only

suggest allowing dynamic module paths in the body of clauses.

However, implementation of this extension is very di�cult and involves modi�cation of the

Warren Abstract Machine. For example, consider the simple query

?- X = test, process(X:fred).

The value of X is not known until the call to process/1 is about to be made. However, in

order for the call to continue, `test:fred' has to be dereferenced before the call is made. There is

no interaction here with anything at the Prolog level (if the call was made via call/1, we could

do some pre-processing), so all processing has to be done at the Warren Abstract Machine level.

This area is beyond the scope of this project, so is left only as an introduction to the complexities

of dynamic binding in the modules environment.

This concludes an overview of some future ideas for the modules system and highlights some

of the problems and shortfalls of the system.

52

Chapter 9

Related Work

There are numerous other modules systems that have been proposed for Prolog, and many

have been implemented in systems available today. However, most commercial systems have

very simplistic modules systems. For example, in Quintus Prolog [Qui], a widely used system,

modules are at and do not address function modularity. When a module is de�ned it is speci�ed

by a name and a public predicate list (a list of the predicates de�ned inside the module which

can be accessed from other modules). The modules interact by specifying which other modules

they are to import predicates from. If a module M imports a module N, then module M can call

any predicate P which is given in module N's public predicate list, without the need to qualify

1

predicates. This does mean that the list of predicates de�ned in a module has to be distinct

from the public list of any module it imports. However, Quintus allows dirty programming and

by explicitly qualifying predicates one can override the importing rules. One interesting aspect

of Quintus Prolog which could be considered for future versions of my modules system, is that

the database manipulation predicates can only operate on predicates within the current module

unless a remote predicate has been de�ned as a `dynamic' predicate in its home module.

LPA Prolog [Log] has a similar system to Quintus, but allows hierarchical modules. Modules

are de�ned by their name, their export list, and an additional import list (predicates only).

Both systems are typical of many of the modules systems in commercial Prolog systems. Even

MProlog [Log85], whose name is an acronym for Modular PROgramming in LOGic, is a at

modules system, with commands to import or export individual predicates or entire modules

only.

Dietrich [Die89] proposed a preprocessor based modules system for Prolog which could easily

be placed on top of any existing Prolog system. The modules system itself is in much the

same style to Quintus Prolog (modules are at, and are explicitly imported if needed), but

includes extensions for function modularity so the implementation of abstract data types is

1

Given a predicate predicate, its quali�ed form is module:predicate, where module is the `home' module for

that predicate.

53

possible. Dietrich addresses the issue of extra-logical predicates in his paper but claims that a

pre-processor based system is enough to resolve any problems that may occur at run time. His

argument is awed however, failing to take into account calls like :

:- read(X), assert(X).

Dietrich also suggests that instead of creating one system module implicitly imported to all

modules, there could be several system modules which have to be explicitly imported if needed.

Example modules could be `arithmetic' or `lists' for handling speci�c tasks. This idea is used in

the G�odel language by Hill and Lloyd [HL91], regarded as the declarative successor to Prolog.

But again G�odel has a very simplistic module system. It does provide however, modularisation

facilities for both predicates and functions, allowing abstract data types to be created.

Chen [Che87] bases his module system on second-order logic because he claims that since

Prolog itself is based on �rst-order logic, it is natural to base a modules system on second-order

logic. Take the following simplistic example of a module :

mod_test(Printout,Comp) = {

Printout(A,B) :-

Comp(A,B),

write(correct), nl.

Printout(A,B) :-

write(incorrect), nl.

}

`Printout' and `Comp' can be regarded as predicate variables for the module `mod test'.

When the module is to be used, you `call' it with predicate arguments (actual predicates or

predicate variables), and a module instance is created for the duration of that call. For example,

consider the call :

:- mod_test(Printout,<=), Printout(3,5).

correct

This builds a module which de�nes a predicate Printout, parameterised using the predicate

<=/2. Note that Printout is actually a variable, and is assigned a value at run time. A call is

made to the predicate bound to Printout and after the call is complete, the module created for

the call is destroyed when the binding of Printout is lost.

Complex compound modules can be built in this system and this leads to a powerful, hier-

archical modules system. However, the author does not address the issues of extra-logical pred-

icates, claiming \no higher-order logic is su�cient for characterizing the semantics of call/1".

This does reduce the usefulness of the system.

I complete this overview by considering the modules system proposed in a draft document by

the International Organisation for Standardisation [Pro]. They propose a completely at modules

54

system, with no concept of function modularisation. The programmer can completely bypass the

modules system by explicitly qualifying predicate names, giving a rather `dirty' system. This,

of course, bears remarkable similarity to the Quintus Prolog and other major Prolog systems

available today.

It is interesting to note that out of the modules system discussed above, only Chen [Che87]

introduces the concept of parameterised modules. In my system, functors are parameterised

modules and are used frequently to build up larger programs from smaller components. Chen's

module system allows parameterised modules which accept predicate arguments only but has no

concept of modules parameterised by other modules.

Sannella and Wallen discuss other modules systems in their paper [SW92], including work

by Miller [Mil89] and Goguen and Meseguer [GM84], bit I will not repeat their discussion here.

55

Chapter 10

Conclusion

This report has described the implementation and re�nement of the modules system for Prolog

proposed by Sannella and Wallen [SW92]. They base their work on the modularisation facilities

of Standard ML and describe an extended language which allows construction of Prolog programs

by instantiation of parameterised components and provides facilities for data abstraction.

In particular, I have extended this work to discuss the interaction of the module environment

with Prolog's extra-logical facilities, an area often neglected when other module systems are

considered.

The Modular Prolog system developed throughout this project sits on top of an existing

Prolog system (SB-Prolog) and my work shows that this modules system does not require alter-

ation of the basic Prolog interpreter (the Warren Abstract Machine). The only changes to the

code of SB-Prolog that were in fact required were to the Prolog level routines which handle the

extra-logical facilities of Prolog.

However, a word must be said about the suitability of Prolog for such a modules system. In

a language like Standard ML, where there are no facilities to dynamically alter programs or to

build new datatypes, then the modules system is suitable. However, the modules system itself

implies a reasonably static environment, which is not the nature of Prolog at all. In Prolog, the

programmer requires the ability to make full use of the database and the ability to create terms

in any form, at any time. This does not interact nicely with the modules system.

The module system also introduces `fun X = Y' declarations to enable functions with dif-

ferent names to unify. Since uni�cation is an integral part of Prolog, surely additions such as

this are altering the underlying language? The programming methodology used with modules

is di�erent to that used in Standard Prolog. Standard Prolog programmers are used to an envi-

ronment without declarations and without a strong distinction between predicates and functions

| exibility is often the key word for Prolog. The modules system introduces both these con-

straints, so is a radically new approach for Prolog programmers. The need to include a relaxed

approach to declaration before use, allowing undeclared predicates and functions to be accepted,

56

shows to some extent how the modules system is too restrictive for Prolog.

Having said this, Prolog is in need of a good modules system. This modules system is

powerful and exible, and provides much needed facilities such as data abstraction. But is it

exible enough for the Prolog programming community?

In sum, I have implemented a powerful hierarchical modules system for Prolog which adds

module constructs and data abstraction facilities needed to allow Prolog to become a more

convenient language for large projects.

57

Bibliography

[Bra86] Ivan Bratko. Prolog Programming for Arti�cial Intelligence. Addison-Wesley, 1986.

[Che87] Weidong Chen. A Theory of Modules based on Second-Order Logic. In Proceedings of

Symposium on Logic Programming, pages 24{34, 1987.

[Deb88] Saumya K Debray. SB{Prolog Manual. Department of Computer Science, University

of Arizona, 1988.

[Die89] R Dietrich. A Preprocessor Based Module System for Prolog. TAPSOFT, 1989.

[GM84] J Goguen and J Meseguer. Equality, types, modules and generics for logic programming.

In Proceedings on Symposium on Logic Programming, pages 115{127, 1984.

[GM89] G Gazdar and C Mellish. Natural Language Processing in Prolog : An Introduction to

Computational Linguistics. Addison-Wesley, 1989.

[Har89] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,

University of Edinburgh, January 1989.

[HK87] Kenji Horiuchi and Tadashi Kanamori. Polymorphic Type Inference on Prolog by

Abstract Interpretation. Technical Report TR-263, ICOT Tokyo, 1987.

[HL91] P M Hill and J W Lloyd. The G�odel Report. Technical report, Department of Computer

Science, University of Bristol, September 1991.

[Llo87] J W Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[Log] Logic Programming Associates Ltd. LPA Prolog Professional Manual (Version 1.5).

[Log85] Logicware. MPROLOG, Release 2.1, September 1985.

[Mac88] David MacQueen. An Implementation of Standard ML Modules. Technical report,

AT&T Bell Labs, March 1988.

[Mil89] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic

Programming, Volume 6:79{108, 1989.

58

[MO83] Alan Mycroft and Richard O'Keefe. A Polymorphic Type System for Prolog. Technical

Report No 211, Department of Arti�cial Intelligence, University of Edinburgh, 1983.

[Pro] Prolog - Part 2, Modules - Working Draft 1.0. International Organisation for Standard-

isation.

[Pro92] Prolog - Part 1, General Core - Committee Draft 1.0. International Organisation for

Standardisation, March 1992.

[Qui] Quintus. Quintus Prolog Manual.

[RK92] M G Read and E A Kazmierczak. Formal Program Development in Modular Prolog :

A Case Study. Technical Report ECS-LFCS-92-195, University of Edinburgh, January

1992.

[SW92] D T Sannella and L A Wallen. A Calculus for the Construction of Modular Prolog

Programs. In The Journal of Logic Programming, volume 12, nos 1 and 2, pages 147{

178. January 1992.

[War83] D H D Warren. An Abstract Prolog Instruction Set. Technical Report 309, AI Center,

SRI International, October 1983.

59

Appendix A

Changes to the Semantics

The following gives a list of the changes made to the semantic equations given in [SW92]. The

semantics used by this system is basically much the same as that proposed, with only minor

di�erences.

First, a list of the semantic changes to compensate for the changes in core syntax is given.

There are trivial changes that have been made to the semantics, but these are not included here,

only the less trivial cases are given.

� In order to handle the new style of separate structure and sharing speci�cations, replace

the old Spec[[structure : : : sharing : : :]] with :

Spec[[sharing patheq

1

and : : : and patheq

n

]] sig =

identify(Patheq[[patheq

1

]]sig [: : :[Patheq[[patheq

n

]]sig; sig)

� To handle the new pred Name/Arity declarations, add the new equation :

Dec[[pred atid=nat:]] < substrs; preds; funs > � � =

let tag be an unused internal predicate name in

< substrs; preds [f< atid; nat > 7! tagg; funs >; �; ; �; ; >

error if < atid; nat >2 dom(preds)

The following is the list of the semantic equation changes that do not fall into the category

of syntax changes.

� A subtle change to fit : structure x signature �! structure. This function no longer

creates a unique tag for the structure produced as a result of the �tting operation, as we

want structures de�ned by statements like structure one = two/signature1 to share

the same structure tag.

fit(< tag;< substrs; preds; funs >>;< substrs

0

; preds

0

; funs

0

>) =

60

< tag;< substrs�dom(substrs

0

); preds�dom(preds

0

); funs�dom(funs

0

) >>

error ... as before ...

� In order to ensure that we can rede�ne a structure more than once, and use only the most

recently declared, we change the following :

In addsubstrs : (atid x structure) � set x signature ! signature, change last line of

function which was :

< substrs [substrs

0

; preds [preds

0

; funs [funs

0

>

to

< substrs[substrs

0

]; preds[preds

0

]; fun[funs

0

] >

so that new structure declarations replace the old ones.

In the de�nition of Strb[[atid = strexpr]] the error case

error if atid 2 dom(�)

should be removed to allow structures to be rede�ned.

And �nally, in the de�nition of Dec[[structure : : :]] the section that reads :

� [f atid

1

7! sig

1

, : : : g

should be replaced by

� [atid

1

7! sig

1

, : : :]

so that when the structure environment � is updated, new versions of a structure replace

old ones.

Similar changes are necessary for the declaration of signatures and functors, but these are

not listed here.

� In order to ensure that predicate and functions are unique, the error lines in Spec[[fun : : :]],

Spec[[pred : : :]],Dec[[atid(: : :) :- predappl

1

; : : :]],Dec[[fun : : :]],Dec[[pred : : :]] andDec[[atid(: : :)]]

need to be extended to ensure that any constant de�ned is not already a function or a pred-

icate. The additional error case is :

error if < atid; nat >2 dom(preds) or if < atid; nat >2 dom(funs)

This concludes the list of changes to the semantic equations that I propose.

61

Appendix B

Notes on Prolog Terminology

It is interesting to briey discuss the terminology used in this report. In the general Prolog

literature, the terminology used for describing Prolog depends very much on the author and the

intended audience and in fact much of the terminology used is completely contradictory.

For example, in [SW92] the following terminology is used :

Predicate Constant = predicate symbol and arity

Function Constant = function symbol and arity

Term = function constant and sequence of arguments (terms)

Atom = predicate constant and sequence of arguments (terms)

This is consistent with the terminology used by Lloyd [Llo87], which is standard in the logic

community.

However, taking the Prolog programmer's view of Prolog, we see very di�erent terminology,

briey outlined below :

Functor = symbol and arity

Compound term = functor and arguments (not including atoms)

Atom = zero arity functor

Structure = compound term

Atomic = an atom or a number but not a variable

Term = anything (a variable, an atom, a number, a compound term or a list)

This is taken from the SB-Prolog manual [Deb88], which is consistent with Prolog texts

such as [Bra86]. Notice that the main inconsistencies appear in the de�nitions of atom and

term and that the latter terminology does not address the distinction between functions and

predicates, a notion emphasized by the former. These inconsistencies were a major problem I

encountered when introducing the terminology I use throughout this document. No standard

set of terminology exists for Prolog.

62

A draft copy of the International Standard for Prolog [Pro92] introduces a knot of terminol-

ogy, spanning several pages. To give an example, the document uses terms such as predicate,

predicate indicator, predicate name, predication and procedure, all referring to predicates and

their speci�cation. This seems somewhat unnecessary and overly complex.

I have tried to keep a centre line in this argument, and so have introduced the terminology

given in the introduction to this report, which I hope is self explanatory.

63

Appendix C

Example Programs

This appendix gives the code for several Modular Prolog programs and is included to back up

the introduction to the modules system given in chapter 2 and ideas developed in later chapters.

C.1 Eight Queens Problem I

The �rst program is adapted from a program in \Prolog Programming for Arti�cial Intelli-

gence" by I. Bratko [Bra86] and highlights how the modules system can be used for simple AI

applications.

The program solves the Eight Queens problem by depth-�rst or breadth-�rst search. The

basic problem is to place eight queens on an eight by eight chess board such that no queen can

attack any other.

signature searchsig =

sig

pred solve/2. % To start search.

end.

signature problemsig =

sig

pred s/2 and % Calculate successor states.

goal/1. % Defines a valid goal state.

end.

functor dfs(p/problemsig)/searchsig =

struct

structure x = p.

solve(Node,Solution) :-

64

df([],Node,Solution).

df(Path,Node,[Node|Path]) :-

x:goal(Node).

df(Path,Node,Sol) :-

x:s(Node,Node1),

not member(Node1,Path), % No Cycles!

df([Node|Path],Node1,Sol).

end.

functor bfs(p/problemsig)/searchsig =

struct

structure x = p.

solve(Node,Solution) :-

bf([[Node]],Solution).

bf([[Node|Path]|_],[Node|Path]) :-

x:goal(Node).

bf([[N|Path]|Paths],Solution) :-

bagof([M,N|Path],

(x:s(N,M),not member(M,[N|Path])),

Newpaths), % Newpaths = acyclic extensions of [N|Path]

append(Paths,Newpaths,Paths1), !,

bf(Paths1,Solution);

bf(Paths,Solution). % Case that N has no successors.

end.

structure eightqueens/problemsig =

struct

goal([_,_,_,_,_,_,_,_]).

s(Queens,[Queen|Queens]) :-

member(Queen,[1,2,3,4,5,6,7,8]),

not member(Queen, Queens),

safe([Queen|Queens]).

safe([]).

safe([Queen|Others]) :-

safe(Others),

noattack(Queen,Others,1).

noattack(_,[],_).

noattack(Y,[Y1|Ylist],Xdist) :-

65

Y1 - Y =\= Xdist,

Y - Y1 =\= Xdist,

Dist1 is Xdist + 1,

noattack(Y, Ylist, Dist1).

end.

structure eightbfs = bfs(eightqueens).

structure eightdfs = dfs(eightqueens).

To solve the problem by depth �rst search use :

eightdfs:solve([],Solution)

or by breadth �rst search use :

eightbfs:solve([],Solution)

The solution is a list of the nodes which form the path taken to solve the problem. The node

at the head of the list is actually the �nal solution, and has the form :

[position

1

, position

2

, : : :, position

8

]

which means place one queen at (1,position

1

), the next at (2,position

2

), etc.

C.2 Eight Queens Problem II

This program is not a Modular Prolog program but runs under Standard Prolog. It was used to

compare the memory and execution performance of Modular and Standard Prolog.

solvedfs(Node,Solution) :-

df([],Node,Solution).

df(Path,Node,[Node|Path]) :-

goal(Node).

df(Path,Node,Sol) :-

s(Node,Node1),

not member(Node1,Path), % No Cycles!

df([Node|Path],Node1,Sol).

solvedfs(Node,Solution) :-

bf([[Node]],Solution).

66

bf([[Node|Path]|_],[Node|Path]) :-

goal(Node).

bf([[N|Path]|Paths],Solution) :-

bagof([M,N|Path],

(s(N,M),not member(M,[N|Path])),

Newpaths), % Newpaths = acyclic extensions of [N|Path]

append(Paths,Newpaths,Paths1), !,

bf(Paths1,Solution);

bf(Paths,Solution). % Case that N has no successors.

goal([_,_,_,_,_,_,_,_]).

s(Queens,[Queen|Queens]) :-

member(Queen,[1,2,3,4,5,6,7,8]),

not member(Queen, Queens),

safe([Queen|Queens]).

safe([]).

safe([Queen|Others]) :-

safe(Others),

noattack(Queen,Others,1).

noattack(_,[],_).

noattack(Y,[Y1|Ylist],Xdist) :-

Y1 - Y =\= Xdist,

Y - Y1 =\= Xdist,

Dist1 is Xdist + 1,

noattack(Y, Ylist, Dist1).

C.3 Database Management

The following is an example of a database management program. Although it is a rather small

and very arti�cial example, it shows many of the facilities available under the modules system.

However, the program is not a good example of good modular programming style and methods

used here are not ideal | it has been written simply to show as many modular and extra-logical

facilities in action as is possible in one program. The other programs given in this appendix give

a better indication of good programming technique.

Some of the facilities shown are :

67

� Asserting into remote structures.

� Calling predicates in remote structures.

� The use of term manipulation predicates.

� Input and output predicates.

� Moving atoms to remote structures (using dismantle name/3).

signature dataopsig =

sig

fun record/2.

pred add_record/0 and get_record/1.

end.

signature searchsig =

sig

pred ismatch/3.

end.

structure database =

struct

pred record/2.

end.

structure dataoperations/dataopsig =

struct

fun record/2.

add_record :-

writename('Type name'),nl,

get_atom(A),

writename('Type search keys (terminate with end).'), nl,

get_keys(List),

B =.. [data|List],

structure(Tag,database),

assert(record(A,B),Tag).

get_record(record(X,Y)) :-

var(X), var(Y),

structure(Tag,database),

call(record(X,Y),Tag).

68

% Note the use of var/1 to guarantee that no

% outer structure references occur during call/2.

get_atom(X) :-

repeat,

writename('> '),

read(X),

(atom(X) -> true ;

(writename('Data must be an atom, please re-type'),

nl,fail)).

get_keys(List) :-

get_atom(X),

(X == end -> List = [] ;

(get_keys(Rest),

List = [X|Rest])).

end.

structure search1/searchsig =

struct

fun item = dataoperations:record.

ismatch(X,item(A,B),A) :-

B =.. [_|Rest], % _ would actually be database:data/0

member(X,Rest).

end.

structure search2/searchsig =

struct

fun item = dataoperations:record.

ismatch(X,item(A,B),A) :-

match_args(1,B,X).

match_args(Arg,B,X) :-

arg(Arg,B,Item),

(Item = X -> true ;

(Narg is Arg + 1,

match_args(Narg,B,X))).

end.

functor time(x/searchsig) =

struct

69

structure search = x.

inherit dataoperations.

timesearch(SF) :-

cputime(X),

get_results(SF),

cputime(Y),

Diff is Y - X,

writename('Time taken is '),

writename(Diff), nl.

get_results(SF) :-

dataoperations:get_record(X),

search:ismatch(SF,X,A),

tab(8),writename('Found '),

writename(A),

tab(5),

write([A]),

nl,fail.

get_results(_).

end.

functor menu(x/dataopsig,y/searchsig,z/searchsig) =

struct

structure dataops = x.

structure search1 = time(y).

structure search2 = time(z).

menu :-

nl,

writename('Select option required'), nl,

writename(' 1 - Add new record'), nl,

writename(' 2 - Timed search 1'), nl,

writename(' 3 - Timed search 2'), nl,

writename(' 4 - Quit'), nl,

writename('{Terminate all input with a period (.)}'), nl,

repeat,

writename('> '),

read(X),

valid_choice(X),

menu.

70

valid_choice(1) :-

dataops:add_record.

valid_choice(2) :-

get_search_key(Key),

search1:timesearch(Key).

valid_choice(3) :-

get_search_key(Key),

search2:timesearch(Key).

valid_choice(4) :-

abort.

valid_choice(_) :-

writename('Invalid choice - reselect'), nl, fail.

get_search_key(Key) :-

repeat,

writename('Type search key > '),

read(X),

(atom(X) -> (structure(Tag,database),

dismantle_name(X,Name,_),

dismantle_name(Key,Name,Tag)) ;

(writename('Search key must be an atom'),

nl,fail)).

% Note here that we have to move the atom typed from

% the current structure to the structure 'database'

% as the original data was moved to 'database' and

% the tags must match for the atoms to be equal.

end.

structure program = menu(dataoperations,search1,search2).

The system is started using program:menu.

C.4 Active Chart Parser

The following is an active chart parser which can handle a small subset of English. The program

is adapted from the active chart parser given in \Natural Language Processing in Prolog : An

Introduction to Computational Linguistics" by G. Gazdar and C. Mellish (see [GM89]).

signature agenda_sig =

sig

71

pred add_to_agenda/4 and remove_from_agenda/4 and

erase_agenda/0 and agenda_data/4.

end.

structure agenda/agenda_sig =

struct

pred agenda_data/4.

add_to_agenda(V0,V1,C,Needed) :-

agenda_data(V0,V1,C,Needed) ->

true ;

asserta(agenda_data(V0,V1,C,Needed)).

remove_from_agenda(V0,V1,C,Needed) :-

retract(agenda_data(V0,V1,C,Needed)).

erase_agenda :-

retractall(agenda_data(_,_,_,_)).

end.

signature chart_sig =

sig

pred add_chart_edge/4 and erase_chart/0 and chart_edge/4.

end.

structure chart/chart_sig =

struct

pred chart_edge/4.

add_chart_edge(V0,V1,C,Needed) :-

chart_edge(V0,V1,C,Needed) ->

true ;

asserta(chart_edge(V0,V1,C,Needed)).

erase_chart :-

retractall(chart_edge(_,_,_,_)).

end.

signature grammar_sig =

sig

pred initial/1 and rule/2 and lex/2 and tag/1.

end.

72

structure grammar1/grammar_sig =

struct

tag(X) :-

current_structure(X).

initial(s).

rule(s,[np,vp]).

rule(np,[det,nb]).

rule(nb,[n]).

rule(nb,[n,rel]).

rule(rel,[wh,vp]).

rule(vp,[iv]).

rule(vp,[tv,np]).

rule(vp,[dv,np,pp]).

rule(vp,[sv,s]).

rule(pp,[p,np]).

lex(np,[kim]).

lex(np,[sandy]).

lex(np,[lee]).

lex(np,[bread]).

lex(det,[a]).

lex(det,[the]).

lex(det,[her]).

lex(n,[consumer]).

lex(n,[duck]).

lex(n,[man]).

lex(n,[woman]).

lex(wh,[who]).

lex(wh,[that]).

lex(p,[to]).

lex(iv,[died]).

lex(iv,[ate]).

lex(tv,[ate]).

lex(tv,[saw]).

lex(tv,[gave]).

lex(dv,[gave]).

lex(dv,[handed]).

lex(sv,[knew]).

end.

73

structure utils =

struct

% For each X do Y.

foreach(X,Y) :-

call(X),

do(Y),

fail.

foreach(_,_).

do(Y) :-

call(Y),!.

% Read in a sentence, terminated by a '.' and tag

% each word with Tag.

get_sentence(Wordlist,Tag) :-

get0(Char),

getrest(Char,Wordlist,Tag).

getrest(46,[],_) :- !.

getrest(32,Wordlist,Tag) :- !,

get_sentence(Wordlist,Tag).

getrest(Letter,[Word|Wordlist],Tag) :-

getletters(Letter,Letters,Nextchar),

name(Word,Letters,Tag), % Note this use of name/2.

getrest(Nextchar,Wordlist,Tag).

getletters(46,[],46) :- !.

getletters(32,[],32) :- !.

getletters(Let,[Let|Letters],Nextchar) :-

get0(Char),

getletters(Char,Letters,Nextchar).

end.

functor abs_parser(x/grammar_sig,y/agenda_sig,z/chart_sig) =

struct

inherit utils.

structure grammar = x.

structure agenda = y.

structure chart = z.

start :-

74

agenda:erase_agenda,

chart:erase_chart,

grammar:tag(Tag),

utils:get_sentence(Sentence,Tag),

grammar:initial(Symbol),

start_agenda(Sentence,0),

start_active(Symbol,0),

expand_edges,

chart:chart_edge(0,_,Symbol,[]).

start_agenda([],_).

start_agenda([Word|Words],V0) :-

V1 is V0 + 1,

utils:foreach(grammar:lex(Category,[Word]),

agenda:add_to_agenda(V0,V1,Category,[])),

start_agenda(Words,V1).

start_active(Category,Vertex) :-

utils:foreach(grammar:rule(Category,Categories),

agenda:add_to_agenda(Vertex,Vertex,Category,Categories)).

expand_edges :-

agenda:remove_from_agenda(V0,V1,Category,Needed) ,!,

extend_edges(V0,V1,Category,Needed).

expand_edges.

extend_edges(V0,V1,Category,Needed) :-

chart:chart_edge(V0,V1,Category,Needed),

expand_edges.

extend_edges(V0,V1,Category,Needed) :-

chart:add_chart_edge(V0,V1,Category,Needed),

new_edges(V0,V1,Category,Needed),

expand_edges.

new_edges(V1,V2,Category1,[]) :-

% Inactive edges

utils:foreach(chart:chart_edge(V0,V1,Category2,

[Category|Categories]),

75

agenda:add_to_agenda(V0,V2,Category2,Categories)).

new_edges(V1,V2,Category1,[Category2|Categories]) :-

% Active edges

start_active(Category2,V2),

utils:foreach(chart:chart_edge(V2,V3,Category2,[]),

agenda:add_to_agenda(V1,V3,Category1,Categories)).

end.

structure final = abs_parser(grammar1,agenda,chart).

The program is started using final:start and expects the user to type a sentence terminated

by a period ('.').

76

